
Notes on connected cuts
Tomáš Turek

February 21, 2025

Contents
1 Preliminaries 2

2 Connected cuts definitions 2
2.1 Single commodity connected cuts . 2
2.2 Multi commodity connected cuts . 2
2.3 Other cuts . 3

3 Absorptive flow 3
3.1 Boundary of the absorptive flow . 4

4 Integer program 4
4.1 Variables . 4
4.2 Constraints . 4
4.3 Optimization function . 4
4.4 The whole formulation . 4
4.5 Properties . 5
4.6 Consider the distance from source . 5

5 Approximation 6

6 Improving the result 6

7 Example graphs 6
7.1 Star graph . 7
7.2 Comet graph . 7

8 More sources – work in progress 7
8.1 Linear program . 7

8.1.1 Variables . 7
8.1.2 Constraints . 8
8.1.3 Optimization function . 8

9 Not fixed k – work in progress 8

10 NP hardness 8
10.1 Reduction . 8

Links
• Approximating unique games
• Minimum Bisection
• Min max and small set expansion
• Approximation algorithms for maximally balanced connected graph partition
• On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems
• On the minimum s− t cut problem with budget constraints
• Balanced Crown Decomposition for Connectivity Constraints
• (Almost) Tight Bounds and Existence Theorems for Single-Commodity Confluent Flows, 2007

1

https://www.semanticscholar.org/paper/Approximating-unique-games-Gupta-Talwar/a90ecfd407e1730c9039fdc46e7efefcc46dcfda
https://www.khoury.northeastern.edu/home/austin/papers/bisection.pdf
https://epubs.siam.org/doi/abs/10.1137/120873996
https://link.springer.com/article/10.1007/s00453-021-00870-3
https://www.sciencedirect.com/science/article/pii/S0304397515009378
https://link.springer.com/article/10.1007/s10107-023-01987-9
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.26
https://www.cs.cornell.edu/~rdk/papers/conflu.pdf

• Polylogarithmic Approximations for the Capacitated Single-Sink Confluent Flow Problem, 2015
• R. K. Ahuja, T. L. Magnati, J. B. Orlin. Network Flows: Theory, Algorithms, and Applications, Pearson, 1993.

1 Preliminaries
We define graph G = (V,E) as usual. Then we talk about edges defined by a cut in the following way. For
vertices S ⊆ V we define E(S, V \S) = {e ∈ E s.t. |e∩S| = 1}, then the size of a cut is e(S, V \S) = |E(S, V \S)|.
Also we will talk about the induced subgraphs which will be denoted as G[S] for some vertices S ⊆ V . Just to
recall that graph is called connected if between every pair of vertices there exists a walk. Also in most cases we
will be considering graphs which are connected, but sometimes this is not necessary.

2 Connected cuts definitions
We will now proceed to some definitions of cuts which are in one way or another connected (meaning that they
induce a connected subgraph). We will start simply and build on that.

2.1 Single commodity connected cuts
Definition 1 (Connected cut). For a connected graph G = (V,E) we define connected cut as S ⊆ V for which
G[S] is connected. The cut itself is E(S, V \ S). Later on we may exchange if we will talk about vertices or
edges. Also (V,E \ E(S, V \ S)) is a disconnected graph.

Now we will like to minimize the size of the cut, i.e. the value of e(S, V \S). Also note that the requirement
for G being connected is actually not necessary. Sometimes we may even define a connected cut with specific
source vertex. This can be formulated by the next definition 2.

Definition 2 (Connected s-cut). For a connected graph G = (V,E) and given vertex s ∈ V we define connected
cut as S ⊆ V for which G[S] is connected and also s ∈ S.

This is pretty much the same problem as in previous definition 1. Note that we would also like to minimize
the size of the cut, i.e. e(S, V \ S). And if we can solve it for the connected s cut we may also apply it for all
s ∈ V to get the value for general connected cut. Some may already see that the property G being connected
is still not necessary.

Some may already know that commonly used cut is for defined source and target distinct vertices. We could
also use it in our case and only extend the previous definition by saying that t /∈ S. It is somewhat tempting to
also require that G[V \ S] is supposed to be also connected. Therefore we can get the full connected s− t cut.

Definition 3 (Connected s− t cut). For a connected graph G = (V,E) and given two distinct vertices s, t ∈ V
we define connected s− t cut as S ⊆ V for which all following properties hold.

1. s ∈ S and t /∈ S.

2. Both G[S] and G[V \ S] are connected.

2.2 Multi commodity connected cuts
Now we can furthermore generalize the notion of connected cuts to multi-way connected cuts.

Definition 4 (Multi-way connected cut with sources). For a connected graph G = (V,E) and pairwise distinct
vertices s1, s2, . . . , sk ∈ V for k ∈ N we define connected cut as partition V = {V1, V2, . . . , Vk} of vertices (that
is

⋃
i=1,...,k Vi = V and for i 6= j Vi ∩ Vj = ∅) such that the following holds:

1. ∀i ∈ [k] : si ∈ Vi and

2. ∀i ∈ [k] : G[Vi] is connected.

In this specific definitions we may look at our problem from two perspective. Those two options can be seen
by the optimization function for the given problem. Sum version is generally more easy to find the solution, or
at least very good approximation. On the other hand optimizing over the max function can be way more tricky.
Observe that the sum size is already computed with multi-commodity cut. Though some modifications has to
be done.

2

https://ieee-focs.org/FOCS-2015-Papers/8191a748.pdf

• Sum size as
∑

i<j E(Vi, Vj).

• Max size as maxi∈[k] E(Vi, V \ Vi).

Also we may define Flexible multi-way connected cut as relaxing the previous problem. That is the
partition will have l partitions where 0 < l ≤ k and only l sources are representing their partition. So
∀i ∈ [l],∃k : sk ∈ Vl.

We may also present another problem which is similar to the previously mentioned one, the only change is
that we do not have predefined sources.

Definition 5 (Multi-way connected cut). For a connected graph G = (V,E) and k ∈ N we define connected cut
as partition V = {V1, V2, . . . , Vk} of vertices (that is

⋃
i=1,...,k Vi = V and for i 6= j Vi ∩ Vj = ∅) such that the

following holds:

1. ∀i ∈ [k] : G[Vi] is connected.

Then we would like to minimize the maximum maxi 6=j e(Vi, Vj).

2.3 Other cuts
Now we can even further increase the number of requirements. In this case to the size of |S|. Now we will also
state what is the optimization function and hence declare a problem.

Problem 1 (k-connected cut). For a connected graph G = (V,E) we say S ⊆ V is k connected cut such that
all properties hold:

1. |S| = k.

2. G[S] is connected.

3. And we want to minimize e(S, V \ S).

From algorithmic perspective we may also have given source vertex s ∈ V , but as it was stated before we
may solve the general case by running |V | times the algorithm for the problem with source.

Note that choosing only two properties from all three can be computed. If we skip the very first one, we
may use the result from Garg, which states a linear program having all vertices as such result. Excluding the
second one can be also computed via some approximation algorithm for bisection. And Overlooking the last
one we just use some search, because we don’t care about the size of the result.

3 Absorptive flow
We will be now talking about an absorptive flow. Firstly we will state the problem in a common sense. For a
graph and a source we get a flow which flows through the graph and every time it goes through a vertex some
of the flow gets absorbed into the given vertex. After that we will define a cut which is induced by such flow
and later on state an integer program and its linear approximation. Now we properly state the instance.

Definition 6 (Absorptive flow). For a graph G = (V,E) and a vertex s ∈ V , also called the source, and
for k ∈ N, such that |V | ≥ k, we define absorptive flow as a tuple of functions denoted as (fV , fE), where
fV : V → R and fE : E → R. Now these two function must have these properties.

1.
∑

v∈V fV (v) = k, that is every part of the flow gets absorbed,

2. fV (s) = 1,

3. ∀v ∈ V : 0 ≤ fV (v) ≤ 1, so all vertices have some limits,

4.
∑

v∈V,(s,v)∈E fE(s, v) = k − 1, the flow starts from the source,

5. ∀e ∈ E : 0 ≤ fE(e), the flow has to be non-negative, but can be unlimited,

6. ∀v ∈ V \ {s} :
∑

u∈V,(u,v)∈E fE((u, v)) =
∑

u∈V,(v,u)∈E fE((v, u)) + fV (v), thus the whole flow continue
unless part of it is absorbed.

One can already see that it resembles a linear program. Some can expect we would define a size of the flow,
but in this special instance we won’t be defining it, since the main purpose is to look at the cut, which is defined
by the flow. So now we will define the cut. But also in that case we would like to enforce that when a flow
passes through a vertex then some of the value gets absorbed.

3

3.1 Boundary of the absorptive flow
Firstly we will define S ⊆ V as the vertices which have nonzero function fV , that is ∀v ∈ S : fV (s) > 0. Then
the boundary defined by an absorptive flow is defined as E(S, V \ S) and its size as e(S, V \ S). We will
furthermore want to minimize the size of such boundary under the additional condition of connectivity.

So far the only property is that s ∈ S, which can be seen only from the definition. Next observations come
from the linear program and its properties.

4 Integer program
In this section we will establish the linear program which works with this flow and its cut.

4.1 Variables
Firstly we declare the variables for edges and for vertices.

fv =

{
1 if it absorbs the flow
0 otherwise

fuv ∈ [0, k] is for the amount of flow on the edge uv.

xuv =

{
1 if uv ∈ E(S, V \ S)
0 otherwise

See that these variables arise only from the definition of the problem. There is only change of fuv being
limited by k, which can be easily observed to be the same.

4.2 Constraints
Now we need to state the constraints. Firstly set the connection between the absorbed vertices and the cut.

xuv ≥ fu − fv ∀{uv} ∈ E
xuv ≥ fv − fu ∀{uv} ∈ E

Which is basically that xuv ≥ |fu − fv|. Next we have to set the flow, so its properties hold.∑
v∈V,sv∈E fsv = k − 1

fs = 1∑
u∈V,uv∈E fuv =

∑
u∈V,vu∈E fvu + fv ∀v ∈ V, s 6= v∑

u∈V fu = k
(k − 1)) · fv ≥

∑
u∈V,{uv}∈E fuv ∀v ∈ V \ {s}

The very last constraint is there to ensure some absorption, that is whenever there is some flow to the vertex
we must absorb based on the flow and capacity.

4.3 Optimization function
Lastly the optimization function will be to minimize the flow throughput and number of cut edges.

min
∑
e∈E

xe

4.4 The whole formulation
min

∑
e∈E xe

xuv ≥ fu − fv ∀{uv} ∈ E
xuv ≥ fv − fu ∀{uv} ∈ E∑

v∈V,sv∈E fsv = k − 1

fs = 1∑
u∈V,uv∈E fuv =

∑
u∈V,vu∈E fvu + fv ∀v ∈ V, s 6= v∑

u∈V fu = k
(k − 1) · fv ≥

∑
u∈V,{uv}∈E fuv ∀v ∈ V \ {s}

fv ∈ {0, 1} ∀v ∈ V
fuv ∈ R+ ∀{u, v} ∈ E

xuv ∈ {0, 1} ∀{u, v} ∈ E

(1)

4

4.5 Properties
Lets talk about some crucial properties of this mixed integer program.

Observation 1. Every vertex in the flow absorb.

Proof. See that due to the last constraint whenever a flow goes inside the vertex we must set the vertex to
absorb some portion of the flow. Exactly 1 in the case of integer program.

Observation 2. fV defines a connected induced subgraph of G.

Proof. Since fs = 1 we know that s is inside the G[S]. For contradiction assume there is a vertex v ∈ S which is
not connected to the source s. Because fv = 1 we must have that there is a flow over this vertex due to the fifth
constraint. And since there is a flow to the vertex v which starts in s there is also a walk from s to v, therefore
no such vertex v exists and all vertices are connected to s and hence they induce connected subgraph.

Lemma 1. The optimal solution x∗ and fast correspond to a minimal k-connected cut and vice versa.

Proof. Firstly suppose we have an optimal solution of the mixed integer program. Then we define the cut as
S = {v|fv = 1}. From the previous observations we know that the cut G[S] is connected. And if it wasn’t
minimal, then we could construct from optimal cut a solution to the MIP which contradicts the minimality.

Suppose we have S as an minimal k-connected cut. Lets build a shortest path tree starting from s where
we consider only the graph G[S]. Lets define set fV to all vertices in S to 1 and to the rest 0. Also define x to
be 1 only if exactly one end is inside S. Lastly the function fE will be defined by the shortest path tree. That
is from s we will send the flow with the size of the sub-tree and recursively call on that.

• See that it satisfy all constraints. xuv is satisfied purely from the definition, the sum of outgoing flow
from s is equal to the sum of all sub-trees which is indeed k − 1. Also there is k vertices with 1 value fv
and also fs = 1. From the tree structure it is easily observed that the Kirchoff’s law is satisfied. And also
the connected constraint.

• Now we have to show that there is no better solution. For contradiction suppose there exists. Due to the
construction of connected cut we then can find smaller cut, which is a contradiction.

4.6 Consider the distance from source
In this subsection we will provide even better model, which arises from the previously mentioned one. This
time we will also use the notation d(u, v) for shortest path between vertices u and v. This is a well known
property of graphs, which can be computed in polynomial time (e.g. using Dijsktra’s algorithm). Therefore we
will increase what we want the vertex absorb by setting the fraction 1

k−1 to 1
k−d(s,u) for every u. That is we

combine two different metrics of path length. One in terms of standard length and the other of terms flow. The
linear program is as follows.

min
∑

e∈E xe

xuv ≥ fu − fv ∀{uv} ∈ E
xuv ≥ fv − fu ∀{uv} ∈ E∑

v∈V,sv∈E fsv = k − 1

fs = 1∑
u∈V,uv∈E fuv =

∑
u∈V,vu∈E fvu + fv ∀v ∈ V, s 6= v∑

u∈V fu = k
(k − d(s, v)) · fv ≥

∑
u∈V,{uv}∈E fuv ∀v ∈ V \ {s}

fv ∈ {0, 1} ∀v ∈ V
fuv ∈ R+ ∀{u, v} ∈ E

xuv ∈ {0, 1} ∀{u, v} ∈ E

(2)

Lemma 2 (Integrality gap). The integrality gap between the presented MIP and its linear relaxation is Ω(k).

Proof. Suppose we have k and a clique graph with n ≥ k vertices. The optimal value of MIP will choose
arbitrarily k vertices, since they are in some sense equal to the solution. That means we will have n−k vertices
in the rest. The size of the cut is therefore n(n − k). On the other hand in the linear relaxation we will send
from s the same value to all vertices so that only n − 1 edges will have non-zero cut-value. For n − 1 vertices
we will split k − 1 equally, hence we will have a cut of size (n− 1) ·

(
1− k−1

n−1

)
= n− 1− k + 1 = n− k. Hence

the integrality gap is in this case k.

5

5 Approximation
The final approximation we will employ is quite simple. That is we will have a vertex and a set of already chosen
vertices. Firstly add s to the set and set it as a current vertex. Then always look at neighbors with non-zero
vertex flow and consider them as another choice. With the flow values choose one with these probabilities.

Algorithm 1 Approximation of the values from linear program.
Require: A graph G with source s and capacity k and flow f on vertices from LP.
Ensure: A connected cut S.

1: S ← {s} and cv ← s.
2: while |S| < k do
3: for all neighbors v of cv do
4: If v /∈ S and f(v) > 0 add it to consideration.
5: end for
6: Choose one vertex u from the considered ones based on the f .
7: S ← S ∪ {u} and cv ← u.
8: end while
9: return S.

6 Improving the result
Also there is the fact that we want to have cut edges only when the flow is really low. Otherwise it does not
make any sense. So either we may be improving our linear program along the way or just consider this during
the approximation. That is we will call the edges with flow > 1 and cut > 0 as a bad edges. Then we will
have a procedure which will enhance the linear program. We will gradually add bad edges to the LP statement
where we set these to 0.

Algorithm 2 Enhancement
Require: Graph G with source s and capacity k.
Ensure: Enhanced LP.

1: Solve the original LP.
2: F = ∅ and cont = false.
3: while cont do
4: cont = false.
5: for all edges e in G do
6: if f(e) > 1 and x(e) > 0 then
7: F = F ∪ {e}.
8: cont = true.
9: end if

10: end for
11: for all e in F do
12: Set x(e) = 0 in the LP.
13: end for
14: Solve updated LP and update solution.
15: end while
16: return Last LP.

Note that this enhancement will in worse case go through all edges, thus m = |E|. We should take a while
and convince ourselves that this improvement does not diverge from the optimal solution, moreover it will get
closer to some optimal solution.

Conjecture 1. The above mentioned linear program with enhancements and approximation algorithm will find
the optimal connected k-cut for trees.

7 Example graphs
We will be looking at a few graphs and mostly their classes and try to observe some properties.

6

Algorithm 3 Connected cut algorithm.
Require: A graph G with source s and capacity k.
Ensure: A connected cut S which minimizes its cost.

1: Create a LP.
2: Enhance the LP.
3: Solve the LP.
4: Use approximation algorithm to obtain S.
5: return S.

7.1 Star graph
Definition 7. Star graph is a graph with one vertex with degree ∆ and the rest of the vertices have degree 1
and are connected to the main one.

s v u

Figure 1: Star graph G with special vertices v, s and u.

7.2 Comet graph
Definition 8. Comet graph contain a star and a tail – hence the name comet.

s v u

Figure 2: Comet graph G.

8 More sources – work in progress
Now we will try to use our linear program to also introduce a solution for the multi-commodity case; when we
have more sources and all of the parts have to be connected. In this particular case we are considering the case
with minimizing the sum.

8.1 Linear program
We will now fully establish the linear program, derived from an integer program by its relaxation.

8.1.1 Variables

Instead of one flow we will have multiple flows. That is f i
v ∈ {0, 1} for all i ∈ [k] and v ∈ V . Therefore we will

also have f i
e ∈ R+

0 for all i ∈ [k] and e ∈ E. We now do not know the size of each part, hence we also introduce
variables ki ∈ N for all i ∈ [k]. Lastly we need cut variables xi

e ∈ {0, 1} for all i ∈ [k].

7

8.1.2 Constraints

Some constraints are quite easy to establish. Firstly we set
∑k

i=1 k
i = |V | that means that we have covered all

vertices. Also ∀v ∈ V :
∑k

i=1 f
i
v = 1, that is every vertex is in one of the absorptive flow. Now we also hard

code that f i
si = 1 meaning that si is in i-th part. The cut we will be similar to the single source problem, that

is xi
e ≥

∣∣f i
u − f i

v

∣∣ for e = {u, v} and all i ∈ [k].
There is way more constraints, but they are just translated from the single source absorptive flow to multiple

ones. Some of them were even already presented. Note that the constraint which enforces the flow to be
connected must change; otherwise we would have a quadratic constraint. But switching n for k will do the job,
but it will be little worse.

Also we want to emphasize that there will be one flow which will dominate. That is ∀e ∈ E, i ∈ [k] :∣∣∣f i
e −

∑
j 6=i f

j
e

∣∣∣ > 1/2.

8.1.3 Optimization function

Now we have two options for optimizing the values. Firstly the sum would be min
∑

e∈E

∑
i∈[k] x

i
e. For min-max

problem we would do a simple trick, which would be adding a constraints ∀i ∈ [k] :
∑

e∈E xi
e ≤ c and now we

will minimize min c.

9 Not fixed k – work in progress
We have presented a linear program for k-connected cut problem, but we may also use this for the case of just
connected cut. That is k will become a variable instead of a parameter. But one must see that if we will set k
to be in a range [n] then surely the optimal value will be k = n i.e. selecting all vertices, but this is not a valid
cut. Thus we need k ≤ n− 1.

Note that this problem is already solve by usual minimal cut. That is due to the fact, that when we have a
s− t flow then the cut induced by such cut known from the Fast Fulkerson algorithm already creates an set S
which induces a connected subgraph G[S].

10 NP hardness
In this section we would like to provide a proof that k-connected cut with weights is NP complete problem.
One can already see whats the definition of wights, but we will still clarify this. In k-connected cut we will also
have a wight function w : E → R+

0 and we want to minimize the sum of weights in the edge cut. That is the
non-weighted version has constant weight function equal to 1.

Now we will state a well known NP complete problem: Knapsack. That is we have n items which we can
enumerate with the set [n] = {1, 2, . . . , n}. Then we have weights of the items: w[n] → R+ and also values:
v : [n]→ R+. Lastly we also have a capacity k. The goal is to pick a subset A ⊆ [n] such that

∑
a∈A w(a) ≤ k

and the value
∑

a∈A v(a) is maximized.
Lets have an instance of knapsack problem; that is (n, v, w, k) and we will create a graph where G = (V,E)

where k-connected weighted cut will correspond to the solution of knapsack problem.

10.1 Reduction
Firstly we will introduce a source vertex s. Then we will add k − 1 vertices which we will call null-vertices.
These will be connected to s and the edges will have weight 0. Then for every item in [n] we will create a clique
Kw(n); that is the size os equal to the weight og an item. We will connect each clique to the source by one edge
with the weight equal to the value of an item. Also the edges inside each clique will be equal to the value of the
item.

Note that we assume the weights and values are in N. Which can be for numbers in Q done easily by scaling
the numbers.

Observation 3. For a solution S ⊆ V of k-connected weighted cut when a vertex v from a clique K is inside
S then K ⊆ S.

Proof. Suppose that is not the case and there is u ∈ K such that u /∈ S. Hence the cut inside the clique adds
(w(a) − 1) · v(a) which is clearly larger or equal then v(a). Because if w(a) = 1 then it does not make sense,
because if one vertex is chosen, then all are; since there is only one. So we would get equal or better solution
by choosing null-vertices instead.

If we assume the weights are at least 3, then it is strictly better.

8

Observation 4. If at least two items can be chosen, then s is inside best solution.

Proof. This property arises from the fact that s connects all parts together.

Hence when we compute the k-connected weighted cut we obtain a set S where s ∈ S and for some indices
i1, i2, . . . , im the cliques Ki1 ,Ki2 , . . . ,Kim ⊆ S and also some null-vertices are in S as well. These cliques
correspond to the chosen elements of the knapsack problem.

Theorem 1. This solution of the knapsack problem is optimal.

Proof. Imagine we would have a better solution. Firstly consider case where an element a can be added to the
solution. This would mean that we have some unused capacity. Therefore in our cut we have used null vertices
and we could instead use corresponding clique. But that would get us a better solution which is a contradiction.
Hence in some sense it is at least good as greedily creating maximal set.

Lets now suppose that there are items a1, a2, . . . al ∈ S and b1, b2, . . . bm /∈ S which can be exchanged for a
better solution. In the cut we would have capacity for doing so. Also b’s add

∑
v(b) to the cut cost whereas

the a’s would add
∑

v(a). But since
∑

v(b) >
∑

v(a) it means that we would get a better cut, which is a
contradiction with the optimality of the cut.

Observation 5. The reduction is in polynomial time.

Proof. We create 1 source vertex, O(k) null vertices and O(
∑

a∈A w(a)) vertices for cliques. Then we add O(k)
edges for null vertices, O(|A|) connections to the cliques and O(

∑
a∈A w2(a) edges inside each clique. Hence all

together it is O(W 2 + k) where W =
∑

a∈A w(a). Perhaps there is a little catch. That is it is considering the
wights as a values, which may be pseudo polynomial.

9

	Preliminaries
	Connected cuts definitions
	Single commodity connected cuts
	Multi commodity connected cuts
	Other cuts

	Absorptive flow
	Boundary of the absorptive flow

	Integer program
	Variables
	Constraints
	Optimization function
	The whole formulation
	Properties
	Consider the distance from source

	Approximation
	Improving the result
	Example graphs
	Star graph
	Comet graph

	More sources – work in progress
	Linear program
	Variables
	Constraints
	Optimization function

	Not fixed k – work in progress
	NP hardness
	Reduction

