
Flows, paths and cuts

Tomáš Turek1

s t

4

5

3

7

11

2

1

4

8

November 27, 2024

1Here are my notes from the course on Flows, paths and cuts. Keep in mind there may be some mistakes. You may
visit GitHub.

https://github.com/metury/notes

Contents

1 Introduction 2
1.1 Network flow . 2
1.2 Min s, t-cut . 2

2 Multi-commodity problem 3
2.1 Multi cut problem . 3
2.2 Example . 4
2.3 Preparation for algorithm . 4
2.4 Pipe cut algorithm . 5
2.5 How to solve LP . 6
2.6 Is there any better approximation? . 6

3 The Sparsest cut problem 7
3.1 Concurrent multicommodity flow . 7
3.2 Metric spaces . 13
3.3 Applications . 14
3.4 Minimum cut linear arrangement . 14

4 Max cut 16

5 Edge disjoint path problem 19
5.1 Edge disjoint path problem and flow number . 20
5.2 Bounded greedy algorithm . 24
5.3 NP hardness of the problem . 24

5.3.1 2-DIR-EDP is NP-hard . 25

6 L-bounded cuts 28
6.1 L-bounded flow . 28
6.2 Approximation for L-cut . 29

6.2.1 L-approximations . 29
6.2.2 n2/3-approximations . 30

6.3 Integrality gap . 30
6.4 L-flow . 30

1

Chapter 1

Introduction

Firstly we remind some basics from flows and cuts.

1.1 Network flow
Flow is defined on a network. Network is on a oriented graph G = (V,E) and it has two special vertices
s, t ∈ V called source and target. Also we have a capacity, which is a mapping c : E → R+

0 . Flow then is a
mapping f : E → R+

0 which has two properties.

1. ∀e ∈ E : f(e) ≤ c(e)

2. Kirchoff’s law: ∀v 6= s, t ∈ V :
∑

uv∈E f(uv)−
∑

vu∈E f(vu) = 0

1.2 Min s, t-cut
Now we also remind ourselves another term which is an s, t-cut. Which is a M ⊆ E such that no s, t-path exists
in G′ = (V,E \M).

These basic terms can be generalized to a multi-commodity flow problem and multi-cut problem.

2

Chapter 2

Multi-commodity problem

On a graph G = (V,E) and k tuples (s1, t1), (s2, t2), . . . , (sk, tk) ∈ V 2 known as commodities we can also
define a network and a flow. Same as before we have a capacity c : E → R+

0 . These commodities are shared on
the same resources.

We may define Pi as all paths between si and ti. And also P :=
⋃k

i=1 Pi.
For a single commodity flow problem we could define a linear program (LP):

max
∑

p∈Pst

fp∑
p:e∈p∈Pst

fp ≤ c(e) ∀e ∈ E

fp ≥ 0 ∀p ∈ Pst

From this we may define a linear program denoted as LP1 for multi commodity problem.

max
∑
p∈P

fp =

k∑
i=1

∑
p∈Pi

fp

k∑
j=1

∑
p:e∈p∈Pj

fp ≤ c(e) ∀e ∈ E

fp ≥ 0 ∀p ∈ P

Alternatively we could define it by a single variables for flows on each edge. For multi commodity problem
we would have k flows which adds up to one single flow. Thus we can see that the problem is in P (polynomial).

2.1 Multi cut problem
As cuts for single flow we may define somewhat similiar definition. Such that for every i the pair si and ti are
not connected by any path. We will also look at a linear program which will be denoted as LP2.

∀e : xe =

{
1 e in cut
0 otherwise

min
∑
e∈E

x(e)c(e) =: Φ (notation for further use)∑
e∈p

x(e) ≥ 1 ∀i ∈ [k] ∀p ∈ Pi

x(e) ∈ {0, 1} ∀e ∈ E(G) (ILP)
x(e) ≥ 0 ∀e ∈ E(G) (LP)

First ILP is integer linear program which is generally NP hard. Thus we will look on the relaxation of LP
program. We may observe that we don’t need to specify that x(e) ≤ 1 due to the minimality.

Now we may see that indeed LP1 and LP2 are dual programs. Thus resulting in knowing that the maximum
flow is the same as minimum fractional cut.

3

2.2 Example
Before we continue we will take a look at a simple example (2.1). The graph is as follows. All capacities are
equal to 1.

s1 = t3

t1 = s2t2 = s2

Figure 2.1: Example graph. With visualized commodities.

We may observe that the max flow is |f | = 3
2 because we can put 1

2 on every edge. Then multi-cut is 2 since
we need to remove always at least two edges. But minimum fractional multi-cut is only 3

2 because we only have
to ”cut” half of each edge. Thus it is the exact same result as max flow.

2.3 Preparation for algorithm
We will show an algorithm which will give an approximate result of a multi-cut problem. We may look at it
like we would cut off some parts of the graph which are close to the sources and continue.

Given Ḡ =
(
V̄ , Ē

)
, (si, ti), k, c : E → R+

0 and solution x of LP2. We define:

Bx(si, r) :=
{
u ∈ V̄ |dx(si, u) ≤ r

}
As a ball around si with diameter w.r.t x. dx(si, u) := the length of the shortest siu path in Ḡ w.r.t. the

edge length x(e).

δ(Bx(si, r)) =
{
{u, v} ∈ Ē : |{u, v} ∩Bx(si, r)| = 1

}
Vx(si, r) =

Φ

k
+

∑
{u,v}∈Ē,u,v∈Bx(si,r)

c(e)x(e) +
∑

{u,v}∈δ(Bx(si,r)):u∈Bx(si,r)

c(e)(r − dx(si, u))

This we call a volume of a ball. We will denoted as a function f(r) for r. The last sum is of all edges which
are only partly inside the ball. Next we also define the following.

Cx(si, r) =
∑

{u,v}∈δ(Bx(si,r))

c(u, v)

This will be denoted as a function g(r). We may see some really nice properties these functions have. For
instance f(r) is a growing function which is increasing linearly and then it jumps to another point. On the other
hand g(r) is constant on some parts and then it jumps to a certain point, these jumps are for both function in
the exact same spots. Next we can see that for some nice points it holds that f ′(r) = g(r). These nice points
are all but the jumps.

Lemma 1. For each i ∈ [n] s.t. si, ti ∈ V̄ there exist r ∈ (0, 1/2) s.t.

Cx(si, r)

Vx(si, r)
≤ 2 ln 2k.

Proof. By contradiction. For fixed i ∀r ∈ (0, 1/2), f ′(r)
f(r) > 2 ln 2k. We will have r0 = 0 < r1 < r2 < · · · <

rl−1 < 1/2 = rl which are the values where f(r) is not continuous (there are these ”jumps”). First we consider
r ∈ (rj , rj+1) for some j.

f ′(r)

f(r)
= (ln f(r))

′

4

So for the contradiction ∀r ∈ (rj , rj+1), (ln f(r))′ > 2 ln 2k. We will compute the integral over all of these
values. We may see that the right side is just a constant so we get∫ rj+1

rj

(ln f(r))
′
> (rj+1 − rj)2 ln 2k.

In rj+1 there may be jump so we instead take the limr→r−j+1
f(r) = f−(rj+1). Note that f−(rj+1) ≤ f(rj+1).

ln f(rj+1)− ln f(rj) ≥ ln f−(rj+1)− ln f(rj) =

∫ rj+1

rj

(ln f(r))
′
> (rj+1 − rj)2 ln 2k.

Now we sum our inequality over all intervals (rj , rj+1), j = 0, . . . , l. We will only have the very ends because
the rest will be once added and once removed.

l−1∑
j=0

(ln f(rj+1)− ln f(rj)) >

l−1∑
j=0

(rj+1 − rj)2 ln 2k

ln f(rl)− ln f(r0) > (rl − r0)2 ln 2k

ln f(1/2)− ln f(0) > ln 2k

ln
f(1/2)

Φ
k

> ln 2k

f(1/2)
Φ
k

> 2k

f(1/2) > 2Φ

As the volume of the entire pipe system is at most 2Φ it means that we have a contradiction.

Note that choosing 1/2 is not necessary for the proof, but for the algorithm to work. Because if we choose
1/2 it means that no sj , tj will both be in a ball for the index i. That is because the length w.r.t x of paths
from sj to tj need to be at least 1.

2.4 Pipe cut algorithm

Algorithm 1 Pipe cut algorithm
Require: Ḡ = (V̄ , Ē).
Ensure: F multi cut.

1: F ← ∅
2: for i = 1 . . . k do
3: if si − ti are still connected in

(
V̄ , Ē \ F

)
then

4: Choose r ∈ (0, 1/2) by Lemma 1.
5: F ← F ∪ δ(Bx(si, r))
6: Remove edges inside Bx(si, r) and δ(Bx(si, r)).
7: end if
8: end for
9: return F

There are few things to talk about. To get r we will check all ”almost ends” of all intervals. The time
complexity is polynomial since everything that is inside the code is polynomial. Correctness of the algorithm is
easily observable since no pair si, ti is inside some other ball and all balls will separate pairs sj , tj . Other thing
to consider is what is the approximation ratio?

Theorem 1. Approximation ratio of the Pipe cut algorithm is O(log k).

Proof. Lets define Ci as the cost of the cut of the ball from iteration i and Vi as the volume of it. We know
that Ci ≤ 2 ln 2k · Vi. ∑

i

Ci ≤ 2 ln 2k
∑
i

Vi ≤ 2 ln 2k · 2Φ = 4 ln 2k · Φ = O(log k)Φ

5

For a single commodity we know that max flow = min cut. Where ≤ is trivial and ≥ is a little harder. This
is a case of exact duality. On the other hand we already shown that this doesn’t hold for multi-commodity,
but what if we can define approximate duality.
Corollary. Max flow ≤ min cut ≤ O(log k) max flow. For multi-commodity case.

Proof. Because of the duality of LP1 and LP2 we know that max flow is the same as min fractional multi-cut.
And because of the algorithm we know that the fractional multi-cut is in O(log k).

2.5 How to solve LP
There is still a problem with our LP which can have up to exponential many of constraints. But this can be
solved fast by using Ellipsoid algorithm on Ax ≤ b. Only thing it needs is an ORACLE which is that for
given x̄, check whether Ax̄ ≤ b and if not return a particular violated constraint.

In our case ORACLE is for each i find the shortest si − ti path w.r.t x̄. This can be either ≥ 1 and we are
happy or < 1 then this constraint is violated.

2.6 Is there any better approximation?
We will show that indeed this approximation is the best we can get. Firstly we will define a new property of
graphs.

Definition 1. A graph G = (V,E) is an α-expander if ∀S ⊆ V, |S| ≤ n
2 , δ(S) ≤ α|S|.

We take as granted that it holds: 3-regular α-expanders exist for α > 0. Now lets observe an example on
the picture 2.2 that at most 1 + 3 · 2l−1 vertices are reachable by a path of length ≤ l.

Figure 2.2: How to get the upper bound. The graph continue and it is 3-regular.

If we take l = log2
n−2
6 +1 so with the upper bound we get 1+3 · n−2

6 = 1+ n−2
2 = n

2 . And also we define an
instance of multi-commodity problem: T = {{u, v}|d(u, v) > l}. A unit of flow consumes ≥ l units of volume
of the entire system. Thus |E| = O(n). Therefore max flow ≤ O(nl) = O(n

logn). But for min cut we take the
optimum F ⊆ E. Every path in G = (V,E \ F) is ≤ n

2 so min cut is Θ(n). Thus it is indeed tight.

6

Chapter 3

The Sparsest cut problem

Same as before we have an undirected graph G = (V,E) and k-pairs of sources and targets (s1, t1), (s2, t2), . . . ,
(sk, tk) ∈ V 2. But we will introduce a new parameters d1, d2, . . . , dk ∈ R+ called demands.

Firstly we will take a look at linear program for solving this problem for k = 1.

max f∑
p∈Pst

xp ≥ f · d1∑
p:e∈p∈Pst

xp ≤ c(e) ∀e ∈ E

x ≥ 0

Where Pst are all paths between s and t. We may see that the optimum of the max flow is the same as this
optimum just divided by d1. We will denote Pi = Psi,ti .

3.1 Concurrent multicommodity flow
Thus we are getting this LP for all k commodities and k demands.

max f∑
p∈Pi

xp ≥ f · di ∀i ∈ [k]

k∑
i=0

∑
p:e∈p∈Pi

xp ≤ c(e) ∀e ∈ E

x ≥ 0

We will take a look at the matrix of this LP and after that find a dual program. But firstly we modify∑
p∈Pi

xp ≥ f · di to f · di −
∑

p∈Pi
xp ≤ 0. Then the matrix is as follows:

f P1 P2 . . .
1 d1 −1 −1 . . . 0 . . . 0 . . .
2 d2 0 0 . . . −1 −1 . . . 0
...
k dk 0 0 . . . 0 0 0 . . .
e1 0 1 0 1 0 0 . . .
...

e|E| 0 0 1 1 0 1 . . .

Where for the first k lines are ≤ 0 and for edges it is ≤ c(e). We visualized the matrix and thus we can
make the dual. We will have variables xe for edges and yi for i ∈ [k]. Thus the dual is:

7

min
∑
e∈E

xec(e)

k∑
i=0

yidi ≥ 1∑
e∈p

xe − yi ≥ 0 ∀i ∈ [k]∀p ∈ Pi

x, y ≥ 0

Definition 2. For S ⊆ V we define δ(S) = {{u, v} ∈ E : |{u, v} ∩ S| = 1} and then I(S) = {i ∈ [k] :
|{si, ti} ∩ S| = 1}. Then the sparsity of S is

ρ(S) =

∑
e∈δ(S) c(e)∑
i∈I(S) di

Example. We will have a simple example where all capacities are 1 and all demands are 1. So we have the graph
3.1. Note that there are 4 pairs of si, ti which can be seen by their demands.

a

d = s1

b

e = t1

c

Figure 3.1: Sparse cut example.

The demands are the red edges. We may see that if we choose S = {c, e} then
∑

e∈δ(S) c(e) = 3 and∑
i∈I(S) di = 3 therefore ρ(S) = 1.
We may see that each pair si ti consumes at least 2 units of a flow of the network for a single unit of the

flow. Then we set f as a max flow and see what we get. For example for paths P1 = {(d, a, e) = p1, (d, b, e) =
p2, (d, c, e) = p3}. xp1

+ xp2
+ xp3

≥ f · d1 = f . Thus the total volume consumed by a flow with objective value
f is ≥ k2f = 8f . Total volume of G is 6. Therefore f ≤ 6

8 = 3
4 .

Maybe we can ask if there exist such a flow with this volume. We can obtain it by pushing 1
4 from d to e

on each path. And 3
8 between all other pairs on all paths. All edges are not over their capacities and we get 3

4
for all demands. Therefore we obtain following graph on picture 3.2. Hence there are 3 paths from d to e so in
total it is 3/4 and there two paths from a to b (and other pairs are same) therefore in total 6/8 = 3/4.
Definition 3. Now F ⊆ E : I(F) = {i ∈ [k] : si, ti are in different components in (V,E \ F)}. And sparsity
of F is defined as

ρ(F) =

∑
e∈F c(e)∑
i∈I(F) di

Lemma 2. minS⊆V ρ(S) = minF⊆E ρ(E).
Proof. The ≥ inequality can be easily seen if we set F to be δ(S). Now we need to show the other inequality.
For given F ⊆ E, let S1, . . . Sl be the components of connectivity of (V,E \ F). For that we will proof that
mini∈[l] ρ(Si) ≤ ρ(F). This will be shown by a contradiction. Assume ∀i:∑

e∈δ(Si)
c(e)∑

j∈I(Si)
dj

>

∑
e∈F c(e)∑
j∈I(F) dj∑

e∈δ(Si)

c(e) > ρ(F) ·
∑

j∈I(Si)

dj

8

a

d

b

e

c

1
4

1
4

1
4

1
4

1
4

1
4

(a) Paths from d to e.

a

d

b

e

c

3
8

3
8

3
8

3
8

3
8

3
8

(b) Flows between the rest of the pairs.

Figure 3.2: Maximal sparsest flow f in G.

Now we sum all i inequalities.

l∑
i=1

∑
e∈δ(Si)

c(e) > ρ(F) ·
l∑

i=1

∑
j∈I(Si)

dj

We can see that
∑l

i=1

∑
e∈δ(Si)

c(e) = 2
∑

e∈F c(e) because all edges are counted twice and similarly∑l
i=1

∑
j∈I(Si)

dj = 2
∑

j∈I(F) dj . So we get:∑
e∈F

c(e) > ρ(F) ·
∑

j∈I(F)

dj

Which is a contradiction. So for each F we can find Si that satisfies the inequality.

Now we can use this for integer program and then use relaxation. The program will look like this:

min

∑
e∈E c(e)xe∑k
i=1 diyi∑

e∈p

xe ≥ yi ∀i ∈ [k]∀p ∈ Pi

k∑
i=1

diyi ≥ 1

xe ∈ {0, 1} ∀e ∈ E

yi ∈ {0, 1} ∀i ∈ [k]

At least one edge has to be removed from each path. Plus we assume that di ≥ 1. Now we could just put
xe ≥ 0 and yi ≥ 0. But the thing is that we don’t have a linear function in the objective function. What if
we have a vector (x, y)→ (αx, αy) for α > 0. You can see that the feasible solution don’t change and also the
objective is the same. So we could put α = 1∑k

i=1 diyi
and we know that the

∑k
i=1 diyi = 1. Thus the linear

program will be:

min
∑
e∈E

c(e)xe∑
e∈p

xe ≥ yi ∀i ∈ [k]∀p ∈ Pi

k∑
i=1

diyi = 1

xe ≥ 0 ∀e ∈ E

yi ≥ 0 ∀i ∈ [k]

9

Before we continue we remind ourselves the Manhattan distance ||z||1 =
∑k

j=1 |zj |. This is indeed a metric,
which means that it is non-negative, symmetric and triangular inequality holds.

Lemma 3. Let f be a mapping f : V → Rd for some d > 0 and let

∀{u, v} ∈ E : x̂({u, v}) = ||f(u)− f(v)||1
∀i ∈ [k] : ŷ(i) = ||f(si)− f(ti)||1

β =
∑k

i=1 d(i)ŷ(i).

Then
(

x̂
β ,

ŷ
β

)
is feasible solution. Also this is called solution induced by f . And we will denote

(
x̂
β ,

ŷ
β

)
=

(x′, y′).

Proof. We need to show that all conditions of LP are satisfied. Easily the non-negativity still holds. Also

k∑
i=1

y′(i)d(i) =

k∑
i=1

ŷ(i)

β
d(i) = 1

where the last equality holds by the definition of β. Lastly we need to check that
∑

e∈E x(e) ≥ y(i) of our
LP still holds. This can be easily proven by the fact that || · ||1 is metric so in particular triangular inequality
is satisfied and by induction on the length of the path we would prove it. Also keep in mind that scaling by β
doesn’t change anything for the whole inequality since it is on both sides.

Lemma 4 (A). Let (x′, y′) be a solution induced by f : V → Rd. Then one can find in polynomial time cut
S ⊆ V of sparsity ρ(S) ≤

∑
e∈E x′(e)c(e).

Lemma 5 (B). Given any feasible solution (x, y) of LP, one can construct a mapping f : V → Rd (by random
algorithm with high probability) which induces a solution (x̄, ȳ) s.t.∑

e∈E

c(e)x̄(e) = O(log k)
∑
e∈E

c(e)x(e)

Theorem 2. There exist a randomized polynomial-time algorithm for the sparsest cut problem that is O(log k)-
approximation.

Proof. By Lemma B (5) we generate (x̄, ȳ) and then by Lemma A (4) we construct the cut.

Proof of Lemma A 4. Given f : V → Rd let

∀u, v ∈ V µ(u, v) = ||f(u)− f(v)||1
For S ⊆ V we define ∀u, v ∈ V

µS(u, v) =

{
1 iff |{u, v} ∩ S| = 1
0 otherwise

This will be called cut mapping and we can easily see that it is non-negative, symmetric and triangular
inequality is satisfied thus it is metric. Before we continue we will use another lemma.

Lemma 6 (lemma). ∀S ⊆ V ∃λS ≥ 0 s.t. ∀u, v ∈ V : µ(u, v) =
∑

S⊆V λSµS(u, v). Moreover |{S|λS > 0}| ≤
n · d.

Proof of lemma 6. Consider the contribution of the first coordinate to µ(u, v): order the vertices according to
f1 where f = (f1, f2, . . . , fd), s.t. f1(v1) ≤ f1(v2) ≤ · · · ≤ f1(vn). Now let S(l) = {v1, . . . , vl} for l ∈ [n].
Consider any two vertices vi, vj s.t. i > j.

f1(vi)− f1(vj) =

i−1∑
l=j

(f1(vl+1)− f1(vl)) =

n−1∑
l=1

(f1(vl+1)− f1(vl))µS(l)(vi, vj)

Where (f1(vl+1)− f1(vl)) = λS(l). This can be used to prove this for all dimensions f2, . . . , fd thus it is true
for f .

Observation. For any non-negative numbers a1, . . . , an and positive numbers b1, . . . , bn holds:∑n
i=1 ai∑n
i=1 bi

≥ min
i∈[n]

ai
bi

10

Proof of observation. By a contradiciton assume ∀j :∑n
i=1 ai∑n
i=1 bi

<
aj
bj

bj

∑n
i=1 ai∑n
i=1 bi

< aj∑
j

bj

∑n
i=1 ai∑n
i=1 bi

<
∑
j

aj

Where the last line is summing all the inequalities together. We get a contradiction. Note that geometricaly
that can be represent as vectors and values of the tan function and it would state that there is a tan smaller of
one of the vectors than the sum of them.

Now we continue to prove the Lemma A.∑
e∈E

c(e)x′(e) =

∑
e∈E c(e)x′(e))∑k
i=1 y

′(i)d(i)

Which is just a division by 1 from the conditions in LP. Then by lemma:

=

∑
e∈E c(e)

∑
S⊆V λSµS(e)∑k

i=1 d(i)
∑

S⊆V λSµS(si, ti)

=

∑
S⊆V λS

∑
e∈E c(e)µS(e)∑

S⊆V λS

∑k
i=1 d(i)µS(si, ti)

≥ min
S⊆V

ρ(S)

The last part is due to the previous observation and the fact that

∑
e∈E

c(e)µS(e) = aS and
k∑

i=1

d(i)µS(si, ti) = bS taken means aS
bS

= ρ(S).

Now we will be proving the Lemma B 5. For that we denote T = {si|i ∈ [k]} ∪ {ti|i ∈ [k]} and without
loss of generality assume that |T | = 2τ (we can add arbitrary sources and targets that are essentially the
same). Let us denote dx(u, v) the length of the x-shortest u − v path. Where x is the result of our LP. For
A ⊆ V : dx(A, u) = minv∈A dx(v, u).

Also we put L = q log(k) where q is some constant to be decided later on and k is for number of commodities.
Also d = L · τ = O(log2(k)). For t = 1, . . . , τ and l = 1, . . . , L: let Atl be a set that is constructed by 2τ−t-times
selecting uniformely at random v ∈ V .

Definition 4. ∀v ∈ V : ftl(v) = dx(v,Atl).

Note that both Atl and ftl are not dependent on l. One can say that l is for repeating the selection.

Lemma 7. ∀{u, v} ∈ E : ||f(u)− f(v)||1 ≤ d · x(u, v).

Proof. We proceed by the definition and some algebra.

||f(u)− f(v)||1 =

τ∑
t=1

L∑
l=1

|ftl(u)− ftl(v)| =
τ∑

t=1

L∑
l=1

|dx(u,Atl)− dx(v,Atl)|

Now lets take a look at these inequalities which follows from the triangle inequalities.

dx(u,Atl) ≤ x(u, v) + dx(v,Atl)
dx(v,Atl) ≤ x(u, v) + dx(u,Atl)

⇓
dx(u,Atl)− dx(v,Atl) ≤ x(u, v)
dx(v,Atl)− dx(u,Atl) ≤ x(v, u)

Which leads to |dx(u,Atl)− dx(v,Atl)| ≤ x(u, v) and thus getting the last inequality:

11

τ∑
t=1

L∑
l=1

|dx(u,Atl)− dx(v,Atl)| ≤ τ · L · x(u, v) = d · x(u, v)

Lemma 8. With probability ≥ 1/2: ∀i ∈ [k] holds that

||f(si)− f(ti)||1 ≥
L

88
yi.

Before proving this lemma we will take a look, how useful it is. β =
∑k

i=1 d(i) · ||f(si)− f(ti)||1 = Ω(log k) ·∑k
i=1 d(i)yi = Ω(log k) where yi is from our LP and thus

∑k
i=1 d(i)yi is equal to 1. The second equality is from

the lemma before. And now from the lemma even before that we get ≤
∑

e∈E c(e) · d · x(e) = d
∑

e∈E c(e)x(e)

which is the objective function result of our LP. Thus = O(log2(k))
∑

e∈E x(e)c(e). But that is scaled by β thus
the objective value of the solution induced by f is ≤ O

(
log2(k)
log(k)

)∑
e∈E c(e)x(e) = O(log k)

∑
e∈E x(e)c(e) and

so we have O(log k)-approximation. So this proves the Lemma B 5.

Proof. To prove the lemma we will prove a simple version that for fixed i ∈ [k] with probability ≥ 1− 1/2k it
holds that

||f(si)− f(ti)||1 ≥
L

88
yi.

We can easily see that for doing this for all i ∈ [k] the lemma will follow. To prove this we will define few
more things.

∀v ∈ {si, ti} : Bx(v, r) = {w ∈ T |dx(v, w) ≤ r}
∀v ∈ {si, ti} : B◦

x(v, r) = {w ∈ T |dx(v, w) < r}

Now we will look at this sequence of radii. r0 = 0,

rt = min
{
r > 0 : |Bx(si, r)| ≥ 2t ∧ |Bx(ti, r)| ≥ 2t

}
t̂ = min

{
t|rt ≥

y(i)

4

}
and also redefine rt̂ =

y(i)
4 . This is defined with respect to LP. And also it means that Bx(si, rt̂)∩Bx(ti, rt̂) =

∅.
Now we observe that for Atl ⊆ V : Atl ∩ B◦

x(si, rt) = ∅ ⇔ dx(si, Atl) ≥ rt. And also Atl ∩ Bx(ti, rt−1) 6=
∅ ⇔ dx(ti, Atl) ≤ rt−1. Let Etl be the event such that A ∩ B = ∅ and A ∩ G 6= ∅ where B = B◦

x(si, rt) and
G = Bx(ti, rt−1).

We may observe that if Etl happens then |ftl(si) − ftl(ti)| = |dx(si, Atl) − dx(ti, Atl)| ≥ rt − rt−1. We will
look at the probability of happening this.

Pr[Etl] = Pr[Atl ∩G 6= ∅|Atl ∩B = ∅] Pr[Atl ∩B = ∅]
≥ Pr[Atl ∩G 6= ∅] Pr[Atl ∩B = ∅]

Let us assume wlog si defines rt.

Pr[Atl ∩B = ∅] =
(
1− |B|
|V |

)2τ−t

≥
(
1− 2t

2τ

) 2τ

2t

≥ 1

e
≥ 1

4

Pr[Atl ∩G 6= ∅] = (1− Pr[Atl ∩G = ∅]) = 1−
(
1− |G|
|V |

)2τ−t

≥

≥ 1−
(
1− 2t−1

2τ

) 2τ

2t−1
1
2

≥ 1−
(
1

e

) 1
2

≥ 4

11

Thus the Pr[Etl] ≥ 1
11 . Now we fix t = {1, . . . , τ} and define:

Xtl =

{
1 iff Etl occurs
0 otherwise

12

For l = 1, . . . , L let µ = E
[∑L

l=1 Xtl

]
. We may observe that µ ≥ L

11 by linearity of E . We now may use the
Chernoff bound.

Pr

[
L∑

l=1

Xtl ≤
µ

2

]
≤ e

−µ
8 ≤ e

−q log k
88 ≤ e− log 2k−log log 2k =

1

2k log 2k

Where there is hidden analysis to proper choice of q. If
∑L

l=1 Xtl ≥ µ
2 then

L∑
l=1

|ftl(si)− ftl(ti)| ≥
L∑

l=1

Xtl(rt − rt−1) ≥
L

22
(rt − rt−1)

Therefore with probability ≥ 1− τ
2k log 2k ≥ 1− 1

2k ∀t ∈ [t̂] the previous statement holds. Thus

||f(si)− f(ti)||1 ≥
L

88
yi =

L

88
4

τ∑
t=1

(yt − yt−1)

3.2 Metric spaces
Some of basic definitions are for metric spaces which reader may already know, but we will remind it once again.
Definition 5. Metric space (M,d) when d : M ×M → R+ and

(i) ∀x, y ∈M : d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y,

(ii) ∀x, y ∈M : d(x, y) = d(y, x),

(iii) ∀x, y, z ∈M : d(x, z) ≤ d(x, y) + d(y, z).

We may already know some examples. One is for G = (V,E) and for x : E → R+ the metric is d(z, y) =
minz−y paths

∑
e∈P x(e). This means that (V, d) is a metric system.

Definition 6. Let (X, d) and
(
Y, d̄

)
be metric spaces. An injective function f : X → Y is D-embedding for

some D ≥ 1, if ∃r > 0 such that ∀x, y ∈ X the following holds

r · d(x, y) ≤ d̄(f(x), f(y)) ≤ D · r · d(x, y).
Definition 7. The inf of D values satisfying the above property is called distortion of f .
Theorem 3 (Bourgain, 1985). Every n-point metric space (V, d) can be embedded in (Rp, l1) with distortion
O(log n) with p = O(log2 n). Where l1 = ||x||1 =

∑
i xi.

We remind ourselves what we did. We constructed f : V → R+ and p = O(log2 k) such that

(i) ∀u, v ∈ V : ||f(u)− f(v)||1 ≤ p · dx(u, v),

(ii) ∀i ∈ [k] : ||f(si)− f(ti)||1 ≥ Ω(log k)dx(si, ti).

So if we take T = V , think about all pair of vertices as commodities. Everything in the proof still works.
So we technically proved this theorem before.

Now the question one can ask is: Is the analysis tight? For the answer we may recall that in 3-regular
graphs, there are Ω(n2) pairs of vertices at distance Ω(log k). That was for the multi-commodity system. Lets
consider 3-regular β-expanders (i.e. δ(S) ≥ β|S|,∀S ⊆ V, |S| ≤ |V |/2).

With that consider the instance: Commodity for each pair of vertices and set all d = 1. This will lead to

min
S⊆V

E(S, V \ S)
I(S)

≥ min
S⊆V

β|S|
|S||V \ S|

≥ β

|V |
= Ω(1/n)

then the max concurrent flow is at most the available capacity O(n) divided by what unit of flow consumes.
Thus get

O(n)

Ω(n2 log n)
= O

(
1

n log n

)
which means that it is tight. Alternatively integrality gap of our LP is Ω(log n). Also it implies that the

asymptotic optimality of the theorem is tight. Otherwise if there was better version we could use that for better
approximation of our LP which is a contradiction. Also there exists O(

√
log n)-approximation for sparsest cut

using positive semidefinite programming.
Corollary. Max flow ≤ min cut ≤ O(log k) max flow. For sparsest cut problem.

13

3.3 Applications
Definition 8. Cut (S, V \ S) is b-balanced (for some b ≤ 1/2) if

bn ≤ |S| ≤ (1− b)n

where G = (V,E) and |V | = n.

1/2-balanced is called bisection. Also there is a problem for finding a b-balanced cut minimizing the number
of edge between E(S, V \ S) (cost of cut). This problem is generally NP-hard.

Theorem 4. If there is a b-balanced cut T in G = (V,E), then for any b′ < min{1/3, b} one can find in
polynomial time b′-balanced cut of cost O

(
E(T,V \T) logn

b−b′

)
.

Proof. First we define the algorithm.

Algorithm 2 Find b′-balanced cut.
Require: Graph G.
Ensure: b′-balanced cut.

1: i := 0, Gi = G, S = ∅
2: while |V (Gi)| > (1− b′)|V | do
3: find an approximation of the sparsest cut in Gi and denote it as Si ⊆ V (Gi)
4: let Gi+1 = Gi[V (Gi) \ Si], S = S ∪ Si, i = i+ 1
5: end while
6: return S

where in the sparsest cut problem is on the network where all vertices are terminals and demands are 1.
Correctness of the algorithm: Before the last iteration it is true that |S| < b′n. In the last iteration at most

|V (Gi)|/2 are added to S. Therefore at the end

≤ |S|+ n− |S|
2

=
n+ |S|

2
<

(1 + b′)n

2
≤ (1− b′)n

Where the last inequality is due the value b′ ≤ 1/3 and the fact that 1+ b′ ≤ 2− 2b′. Also because it ended
|S| ≥ b′n so it is indeed a b′-balanced cut.

Approximation of the cost: Consider an optimal b-balanced cut (T, V \T). In each iteration |T \S| ≥ (b−b′)n.
What is the sparsity of the cut T \ S? Lets denote opt = E(T, V \ V). The sparsity is

≤ opt
(b− b′)n(1− b)n

≤ 2opt
(b− b′)n2

so the sparsity of the O(log n)-approximation Si found by the algorithm is

E(Si, Vi \ Si)

|Si||Vi \ Si|
≤ O(log n)

opt
(b− b′)n2

which means that E(Si, Vi \ Si) ≤ O(log n) opt
(b−b′)n2 |Si|. Now we sum it up.

E(S, V \ S) ≤
∑
i

E(Si, Vi \ Si) ≤ O(log n)
opt

(b− b′)n2

∑
i

|Si| = O(log n)
opt
b− b′

3.4 Minimum cut linear arrangement
Given G = (V,E), find ordering v1, . . . , vn of the vertices such that

max
i⊂[n]

E({v1, . . . , vi}, {vi, . . . , vn}) is minimized.

Observation. OPT ≥ min bisection of G =: B.

Proof. For any ordering E({v1, . . . , vn/2}{vn/2+1, . . . , vn}) ≥ B.

Observation. The depth of recursion is O(log n).

14

Algorithm 3 Find minimum cut linear arrangement
Require: Graph G
Ensure: Minimum cut linear arrangement

1: Find a 1/3-balanced cut of G and denote it as (L,R) by the previous algorithm.
2: Solve the problem recursively for L,R.

Observation. E(L,R) ≤ O(log n) ·B.

And now we would like to get similiar bound for all the levels of recursion. For that consider Gi. Lets
denote Bi the bisection of Gi and OPTi the optimum solution for Gi. Then Bi ≤ OPTi ≤ OPT , therefore in
our solution

∀i ∈ [n], E({v1, . . . , vi}{vi+1, . . . , vn}) ≤ O(log n) ·O(log n) ·OPT

because the first O is for number of recursion calls and the second O is approximation of the size of each
balanced cut. Altogether it is equal to O(log2 n)OPT .

Theorem 5. The approximation ratio of the algorithm is O(log2 n).

Definition 9. Crossing number of the graph is the number of intersections of edges (the minimum). For planar
graphs it is 0 and for not planar it is ≥ 1.

This can be also solved by the algorithm above.

15

Chapter 4

Max cut

We have been talking about minimal cuts the whole time. Now we will consider somewhat opposite problem.
That is for given graph G = (V,E) we want to find S ⊆ V such that E(S, V \ S) is maximized.

For this problem we may introduce a randomized algorithm which is simple. For every vertex choose if
it is in S or in V \ S with probability 1/2. Then E [|E(S, V \ S)|] = |E|

2 ≥
OPT

2 because the probability of edge
being in the cut is exactly one half, since there are four options where u and v may land, but in two scenarios
they are in the same part and in the rest they are on the opposite sites.

Now we would like to talk about 0, 878 . . . -approximation. Firstly we will label our vertices. WLOG:
V = {1, 2, . . . , n}. Set ∀i ∈ V : y2i = 1. Now think about an edge ij. How can we express with this
representation of the graph that ij is in the cut? Think about

yi · yj =
{

1 on the same side
−1 on different sides

and from this we would make

1− yi · yj
2

=

{
0 on the same side
1 on different sides .

So with this we can introduce a maximalization problem:

max
1

2

∑
{i,j}∈E

(1− yiyj)

Altogether we can define a quadratic formulation for max-cut problem. Every part was already mentioned,
but just to gather it on one place.

∀i ∈ V : y2i = 1

max
1

2

∑
{i,j}∈E

(1− yiyj)

yi ∈ R
We may see that this program is not very good for solving. This means we will relax it to a vector program

and we will denote it as VP for future usage.

max
1

2

∑
{i,j}∈E

(1− yTi yj)

yTi yi = 1

∀i : yi ∈ R
The intuition behind it is that we start with 1 dimensional ball (which are line segments [−1, 1]) and then

we will continue to higher dimensions. In the VP we use vectors instead of usual numbers. We will continue
with changing the program. Now it will be to semi-positive programming or SPD for short. This formulation
is as follows.

max
1

2

∑
{i,j}∈E

(1− Yij)

∀i : Yii = 1

Y is positive semi-definite

16

When it is written in this form it can be solved in polynomial time. Just for a reminder we introduce a
definition of PSD.

Definition 10. We say that a symmetric matrix A ∈ Rn×n is positive semi-definite if ∀x : xTAx ≥ 0.

Observation. A is positive semi-definite ⇔ ∃ matrix U ∈ Rn×n s.t. A = UTU .

Observation. VP = PSD

Proof. This is from the above observation because we can put the semi-positive matrix Y to a multiplication
of two matrices which will look like this:. . . y1 . . .

...
. . . yn . . .

...
...

y1 . . . yn
...

...

Algorithm 4 Algorithm for max cut
Require: Graph G
Ensure: S max cut of G.

1: Solve SDP.
2: Interpret it as a solution of the VP → v1, . . . , vn ∈ Rn.
3: Sample uniformly at random r ∈ {x ∈ Rn : x2 = 1}
4: return S = {i ∈ V : vTi r ≥ 0}.

We know that both vi and r are unit vectors. So cosα = vTi · r. Where the cos function can be seen on a
picture 4.1 to visualize how it looks.

−4 −2 2 4

−0.5

0.5

x

cos(x)

Figure 4.1: Cosine function.

Now we will take a step back and try to achieve the mysterious number for the approximation ratio. Let θij
be the angle between vi and vj . Then for {i, j} ∈ E, its contribution to the objective (in VP) is 1−cos θij

2 .

Lemma 9 (no proof). For each x ∈ 〈0, π〉 and α = 0, 87856 it holds that

x

π
≥ α

1− cosx

2

The meaning of it is shown on the picture 4.2.

Lemma 10. For {i, j} ∈ E Pr[i and j are separated] = θij
π .

Proof. Consider the projection of r to the plane defined by vi, vj . Let W be the objective value of our solution:

17

−4 −2 2 4

−1

1

x

y

Figure 4.2: The red function is for x/(π · α) and blue for (1− cos(x))/2.

E [W] =
∑

{i,j}∈E

θij
π

(by linearity of expectation)

≥ α
∑

{i,j}∈E

1− cos(θij)

2
(by the first lemma)

= α
∑

{i,j}∈E

1− vTi vj
2

(this is our objective functions of VP)

≥ α ·OPT (because VP is a relaxation)

18

Chapter 5

Edge disjoint path problem

Some readers may already know what is edge disjoint path problem and also some basic algorithms. But we
will have a brief introduction to this topic.

• INPUT: G = (V,E) and (si, ti) ∈ V 2 for all i ∈ [k].

• OUTPUT: I ⊆ [k] and an si − ti path Pi for each i ∈ I, s.t. the selected paths are edge disjoint.

• OBJECTIVE: max |I|.

It is known that this particular problem is NP-hard. So we will again show some approximation to this
problem. Note: for any fix k it is solvable in polynomial time on undirected graph. But for directed graphs it is
NP-hard for k = 2. We will introduce an greedy algorithm that has an parameter.

Algorithm 5 Greedy algorithm with a catch for parameter
√
m

1: I = ∅
2: while ∃i /∈ I and ∃si − ti path in G, s.t. |Pi| ≤

√
m do

3: I = I ∪ {i}, keep Pi, G = G \ Pi

4: end while

We will denote OPT as the optimal solution of the problem. It will be either a set of paths or set of indexes.
Then we will denote OPTS = {P ∈ OPT | |P | ≤

√
m}, where the length of a path is set as the number of

edges. Then OPTL = OPT \OPTS and ALG as the set given by the algorithm.
Now take the set OPTS \ ALG. That is path between si and ti is in this set if there exists sj − tj path

obtained by the algorithm which shares an edge. This path has length at most
√
m and there are |ALG| paths.

Thus altogether |OPTS \ALG| ≤
√
m|ALG|.

Next we may see that |OPTL| ≤
√
m, because we have m edges and each one of them is at least

√
m long.

Now we may conclude altogether following result.

|OPT | ≤ |OPTL|+ |OPTS \ALG|+ |ALG| ≤ O(
√
m)|ALG|

Now one can see where the catch in the algorithm is. Consider that there are no such short paths. The
algorithm will output no path at all. To fix this we need to change the algorithm such that it will always output
at least one path. If there is none then OPT is 0 as well.

Algorithm 6 Greedy (
√
m)

1: I = ∅
2: while ∃i /∈ I and ∃si − ti path in G, s.t. |Pi| ≤

√
m do

3: I = I ∪ {i}, keep Pi, G = G \ Pi

4: end while
5: if I = ∅ then
6: Connect any si − ti path if possible.
7: end if

Thus we have shown an algorithm that is a
√
m-approximation. Now we consider running the same algorithm

but we change the parameter from
√
m to n2/3. Can we obtain n2/3-approximation?

19

Theorem 6 (Khana, Chedari). Given an instance of the sum multi-commodity flow problem G = (V,E),
(si, ti) ∈ V 2 for all i ∈ [k] such that (∀i) d(si, ti) ≥ l, then the max multi-commodity flow is O(n

2

l2).

Before proving this we will show the consequences for our problem. Lets use the algorithm Greedy(n2/3).
Assume there ∃Pi ∈ ALG, |Pi| ≤ n2/3. Otherwise we use the theorem on the network obtained by G and
setting all capacities to one. Then all edges are at least n2/3 length so we get the max multi-commodity flow is
O(n2

n4/3) = O(n2/3). Therefore it means if we choose just one path the approximation ratio will still be O(n2/3).
Denote OPTeasy = {P ∈ OPT | ∃Q ∈ ALG : Q ∩ P 6= ∅}. With this we know that |OPTeasy| ≤ n2/3|ALG|

by the same argument as it was already mentioned before.
We will look at ∀(si, ti) ∈ (OPT \OPTeasy)\ALG. What can we say about such d(si, ti) at the end of the loop

of the algorithm. Clearly because it was not chosen either there is some intersection with another path, but this is
remove by OPTeasy, so the other option is only that d(si, ti) > n2/3. Hence |(OPT \OPTeasy)\ALG| ≤ O(n2/3)
by the theorem and the same argument which was already mentioned. Altogether we have:

|OPT | ≤ |OPTeasy|+ |(OPT \OPTeasy) \ALG|+ |ALG| = O(n2/3)|ALG|

Now we only need to prove the theorem since it is the base of our arguments for obtaining O(n2/3)-
approximation algorithm.

Proof. We will split the vertices into two sets:

1. low degree vertex is when deg(v) ≤ 6n
l

2. high degree vertex is when deg(v) > 6n
l

Also we will assume l is a multiple of 6. Otherwise it get lost in the O notation. To finish the proof we will
use an observation.

Observation. Any si − ti path (denote it as s− t) uses at least l/6 low degree vertices.

Proof of observation. Consider running BFS on the graph starting from s. We denote Li = {u ∈ V : d(s, u) = i}.
Note that edges are only within one layer or only between adjacent layers. Let Bi be a block of three consecutive
layers {L3i, L3i+1, L3i+2}. Because the length to t is at least l then there is at least l/3 blocks. Assume that
< l/6 layers consists of only low degree vertices. Otherwise the observation obviously holds. Now discard all
blocks containing a layer of only low degree vertices. As there are ≥ l/3 blocks at least ≥ l/6 blocks remain.
Then the smallest remaining block is of size ≤ n

l/6 = 6n/l which can be seen by pigeonhole principle. For the
vertices in the middle layer we know all neighbors are within the block. Therefore it is a low degree vertex.
This is a contradiction because we still have a block having one layer with low degree vertices only.

Now for the theorem we know a unit of flow between any pair si−ti consumes Ω(l) cpacity of edges adjacent
to low degree vertices. And the total capacity adjacent to low degree vertices is ≤ n deg(v) ≤ n(6n/l) = O(n2/l).
Which gives us O(n2/l2).

This is an example of greedy algorithm and the fact that using it with different parameter may result in
better approximation, but the analysis is way harder. We also saw using flows to limit paths, but this has also
its limits. We will show a counterexample a graph called Brick wall.

The graph you may see at the picture 5.1 is planar. Also it can be generalized to k where there are k pairs
of bricks underneath. The edge disjoint problem optimum is 1, which we can see on picture 5.2a. And the max
multi flow optimum is at least k/2 = O(

√
n), which can be seen on picture 5.2b.

5.1 Edge disjoint path problem and flow number
We will be again considering undirected graph G = (V,E). And also a concurrent multi-commodity flow problem
(or CMFP for short) with (si, ti) commodities for i = 1, . . . , k and their demands di ∈ R+. We will denote S as
a feasible solution for such problem.

Definition 11. Flow value is the value of the objective function for S.

Definition 12. Balanced instance of the CMFP such that

∀v ∈ V (G) :
∑

i:si=v

di = deg(v) =
∑

i:ti=v

di.

It may also be defined with inequalities. We will be calling this balanced multi-commodity flow problem
(or BMFP for short).

20

s1 s2 s3 s4

t4 t3 t2 t1

Figure 5.1: Example of a brick wall graph for k = 4.

s1 s2 s3 s4

t4 t3 t2 t1

(a) Edge disjoint problem.

s1 s2 s3 s4

t4 t3 t2 t1

(b) Max multi flow; paths have 1/2.

Figure 5.2: Example of optimalization problems.

Definition 13. Product multi-commodity flow (PMFP for short) is an instance where

• There is a value π(v) ∈ R+ associated with every vertex v ∈ V .

• There is a commodity for every ordered pair of vertices (u, v) of demand π(u) · π(v).

Definition 14. Dilation(S) denoted as D(S) is the length of the longest path in S.

Definition 15. Congestion(S) denoted as C(S) is the inverse of the flow value in S.

As a side-note when there was a problem for a networks in a computers to find best paths for sending
packets it can be shown that the upper bound for the time is somewhat connected to similiar terms, particularly
O(C +D).

Now for a given G = (V,E) we denote I0 as an instance of the PMFP with π(u) = deg(u)√
2|E| . Note that

2|E| =
∑

v∈V deg(v).

Definition 16. Flow number of a graph G denoted as F (G) is

21

min
feasible solution S for I0

{max{C(S), D(S)}}

Claim 7. There is a polynomial time algorithm that computes F (G) for every graph G.

Proof. Lets assume V = {v1, v2, . . . , vn}. For L ∈ N we define graph GL = (V ′, E′). This is a layered graph
with L+ 1 layers. To be precise it is defined as follows

Vi = {vi1, vi2, . . . , vin}, ∀i ∈ 0, 1, . . . , L

Ei = {(v(i−1)j , vik) | {vj , vk} ∈ E} ∪ {(v(i−1)j , vij) | vj ∈ V }, ∀i ∈ 1, 2, . . . , L

then V ′ =

L⋃
i=0

Vi and E′ =

L⋃
i=1

Ei.

Note that we do not keep V and E from the original graph.
Now consider the following instance of CMFP. ∀(vi, vj) ∈ V 2 we set commodity between v0i and vLj of

demand π(vi) · π(vj) (where π is taken from I0). We also define a special request. ∀{vi, vj} ∈ E the sum of
flows over all edges in

L⋃
k=1

{(v(k−1)i, vkj), (v(k−1)j , vki)}

has to be at most 1. This is just a linear constrained so we are able to solve this in polynomial time. With
this requirement we are able to map the solution to the original graph G. Also the dilation is L and to compute
the congestion is easy to do from the result of LP. In other words ∀L ∈ {1, . . . , |V |} find opt of this LP in GL

and denote it as SL. Then let S′
L be the corresponding flow in G. Hence the following holds.

F (G) = min
L=1,...,|V |

{max{C(S′
L), D(S′

L)}}

a

b

c

d

(a) Original graph G.

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

(b) Layered graph GL for L = 3.

Figure 5.3: Shown a visualization of a graph G and its layered version GL.

Claim 8. For any graph G with flow number F = F (G) and an instance I of the BMFP in G, there is a feasible
solution for I with congestion and dilation at most 2F .

Proof. For every (si, ti) ∈ I we define two instances:

I1 : ∀u ∈ V add commodity (si, u) of demand di deg(u)

2|E|

I2 : ∀u ∈ V add commodity (u, ti) of demand di deg(u)

2|E|

Note that
∑

v∈V
di deg(v)

2|E| = di. For v, w what is the sum of demands between v and w in I1?∑
i:si=v

di deg(w)

2|E|
=

deg(w)

2|E|
∑

i:si=v

di =
deg(w)

2|E|
deg(v) =

deg(w) deg(v)

2|E|

This means that I1 is actually I0. Similarly it can be shown that I2 = I0. Hence the F will be doubled for
both I1 and I2 thus getting at most 2F .

22

Lemma 11 (Flow shortening). Let G = (V,E) be a graph and F = F (G) be its flow number. For any ε ∈ [0, 1]
and any feasible flow S in G of flow value f , for an instance of CMFP. There exists a feasible flow of flow value
≥ f

1+ε that uses paths of lengths ≤ 2F (1 + 1
ε).

Before we properly show the proof we show the idea behind it. We set L = 2F
ε and for every path we find

the first L vertices and last L vertices. In some paths they may overlap. We will connect the opposite vertices
and scale demands and flows, so it will eventually work.

Proof. Denote O the set of the paths in S. For p ∈ O denote fp as the amount of flow on path p. Now let
O′ = {p ∈ O | |p| > L} for L = 2F

ε . For a path p ∈ O′ let ap,1, . . . , ap,L be the first L vertices on path p. And
let bp,L, . . . , bp,1 be the last L vertices on path p. (As you may see on picture 5.4). Now we define

ap,1 ap,2 ap,L

bp,L bp,2 bp,1

Figure 5.4: Illustration of the point in the path p.

U =
⋃

p∈O′

L⋃
i=1

(ap,i, bp,i, fp)

which will be a new instance CMFP with demands fp. Also denote P as the set of paths of U . We can make
an observation that U is actually a (subset) of a BMFP. Note that subset means there are inequalities. This
observation is made because S was a feasible solution and making a subset will lead to having BMFP.

For every path p ∈ O′ we replace it by flow systems Sp,i for i = 1, . . . , L. Each system consists of two parts.
(Also on the picture 5.5)

ap,1 ap,2 ap,i ap,L

bp,L bp,i bp,2 bp,1

Figure 5.5: Illustration of the shortening system for Sp,i.

1. An initial segment between ap,1 and ap,i of p plus the final segment between bp,L and bp,i. Also we will
scale these down by (1 + ε)L.

2. We use the flow for the commodity (ap,i, bp,i, fp) ∈ U with flow of a size fp
L(1+ε) .

Now the sum of flow between ap,i and bp,i over all flow systems Sp,i is equal to L
fp

(1+ε)L =
fp

(1+ε) . Also for
every p ∈ O \ O′ we scale down the flow by (1 + ε).

Think about the optimal feasible flow for U . It has these properties:

• ∀e ∈ E the flow in e is ≤ 1. (It is feasible solution.)

• ∀(a, b, f) ∈ U the flow between a and b is ≥ f
2F . (Due to the claim for BMFP instance.)

23

Therefore by scaling these down by ε
1+ε we get the amount we need for all Sp,i’s. Simply if we rewrite

fp
L(1+ε) =

fp
2F (1+ε)ε. Hence for an edge e ∈ E the amount of flow on e due to the ”shortcuts” is ≤ ε

1+ε . Thus
∀e ∈ E the total flow is ≤ 1

1+ε = ε
1+ε = 1. Note that these are really shortcuts, because we have used the

previous claim to obtain such solution for BMFP.

5.2 Bounded greedy algorithm
Lets take a graph G = (V,E) its flow number F = F (G) and consider edge disjoint path problem on such
G with commodities (si, ti) for i ∈ [k]. We will use the Greedy algorithm already mentioned, but with the
parameter 4F instead.

Now we will analyze how the algorithm goes. Let B be the paths of Greedy(4F) and O the paths in optimal
solution. We may look at the optimal paths as an instance of a flow problem. Therefore we will use shortening
lemma with ε = 1 on the flow system O. So let O′ be the resulting flow system. We may see that both O′ and
B uses paths with lengths at most 4F .

For (si, ti) ∈ O′ \ B consider a path p connecting si and ti. Because it was not used by the algorithm there
must ∃q ∈ B such that q ∩ p 6= ∅. We may say that ”q is a witness of (si, ti) of weight fp”.

Observation. For every (si, ti) ∈ O′ \ B there exists witnesses for (si, ti) in B of total weight ≥ 1/2.

Observation. Any path in B serves as a witness of weight ≤ 4F .

Therefore altogether we get the following:

|O| ≤ |O′ \ B|+ |B|
≤ 8F |B|+ |B|
= O(F)|B|

Theorem 9. The approximation ratio of the BGA(4F) is O(F).

5.3 NP hardness of the problem
In this section we will take a look at the hardness of this problem. That is ∀ε > 0 it is NP-hard to approximate
DIR-EDP (directed edge disjoint problem) within n1/2−ε. We may show this by the hardness of the 2-DIR-EDP.
Firstly we construct a l × l mash as depicted on the picture 5.6a. Now we will replace each vertex inside the
mesh with a special graph H that is shown on the picture 5.6b.

1 2 3 l

2

3

l

s1

s2

s3

sl

t1 t2 t3 tl

(a) l × l original mesh.

H

(b) Replacement graph H.

Figure 5.6: Separate parts to create graph G.

With this construction the graph G contains |V (G)| = l × l × k and let k = |V (H)| then set n = k1/2ε and
l = n. With this |V (G)| is asymptotically n (we were not counting sources and targets).

Observation. If this 2-DIR-EDP of instance H is YES-instance, then we can connect all l pairs siti. by edge
disjoint paths.

Observation. If this 2-DIR-EDP of instance H is NO-instance, then we can connect at most 1 siti pair.

With all these observation we see that from 2-DIR-EDP ⇒ n1/2−ε approximation.

24

5.3.1 2-DIR-EDP is NP-hard
As we have shown te NP-hardness of general DIR-EDP to 2-DIR-EDP we will now show the reduction from
3-SAT to 2-DIR-EDP. That is we have a formula F in CNF (conjecttion of clauses which are disjunction of 3
literals).

We have k variables x1, x2, . . . , xk and l clauses t1, t2, . . . , tl. And we will show how the graph will be
constructed. Firstly for every variable we will construct a gadget that has one entering and one leaving vertex
and two separate paths, where on these paths are represented negative and positive occurrences of this variable.
This can be seen on the picture 5.7a. These gadgets will be connected sequentially by exactly one edge.

xi−1

xi x̄i

xi x̄i

xi+1

(a) Gadget for variables xi.

x0

xk

c0

c1

c2

cl

(b) Scheme of variables and clauses.

Figure 5.7: Gadgets for variables and for clauses.

And then for every clause we will have one vertex and every two consequent clauses will be connected by 3
edges. These will represent the given literals. Also the last variable will be connected to the first clause. The
scheme can be seen on the picture 5.7b. Now we only need to connect these gadgets together.

For that we will introduce switch gadget which connects the two previously mentioned gadgets. The exact
construction of the switch is shown on the picture 5.8. But it is enough to see the scheme of the switch on the
picture 5.9a.

We may see that the switch is a small graph with 4 ”inputs” B,C, 8, 8′ and 4 ”outputs” A,D, 11, 11′. It can
be shown that this graph has two following properties.

1. If there are 2 edge disjoint paths one leaving at A and the other entering at B, then the former is entering
at C and the later leaving at D. Look at the picture 5.9a.

2. And exactly one more edge-disjoint path through the graph exists and it is either 8→ 11 or 8′ → 11′.

These switches can be connected by combining A and C and also B and D. Therefore we insert the switches
so 8 → 11 is for the variable in the clause gadget and the other (8′ → 11′) is replaced for the variable in the
variable clause. After that we arbitrarily connect all switches together. Lastly we also insert vertices W,X, Y, Z
as shown on the global picture 5.10.
Claim 10. F is satisfiable ⇔ there are edge disjoint paths from W to X and from Y to Z.

That can be seen on the global scheme. Important note is that for example if xi is set to true then the
variable gadget uses x̄i in the subgraph of G. Generally it uses the other path so it enforces the correct values
in the clauses and also the other way around.

25

C

A

5′

4′

3′

2′

1′

5

4

3

2

1

8′

9′

10′

8

9

10

11′ 11

B

6′
6

D

12′
12

7′7

Figure 5.8: Switch construction.

8 C D 8′

11 A B 11′

(a) Scheme for analyzing.

8

11

8′

11′

DC

BA

(b) Drawn switch scheme.

Figure 5.9: Switch scheme.

26

x0

xk

c0

c1

c2

cl

C

D

B

A

C

D

B

A

X

Y

Z

W

Figure 5.10: Global scheme of the 3-SAT.

27

Chapter 6

L-bounded cuts

In this chapter we will consider a new problem which is length bounded cuts. This problem is NP-hard.

INPUT G = (V,E), s, t ∈ V , L ∈ N.

OUTPUT F ⊆ E such that dG\F (s, t) > L.

OBJECTIVE min(|F |).

Lets see an easy example of a graph G as shown on the picture 6.1 and for L = 4. There can actually be
two minimal L-bounded cuts. The first one is actually not a ”real” cut, but the second one is.

Figure 6.1: Example of L-bounded cut. The cut is drawn by a multiple dashed edge.

6.1 L-bounded flow
For L-bounded cut there is also the opposite problem which is in P and it is the L-bounded flow.

INPUT G = (V,E), s, t ∈ V , L ∈ N.

OUTPUT Flow between s− t that can be decomposed into paths of length ≤ L.

OBJECTIVE max the flow.

We will also show us an example for a graph G depicted on the picture 6.2 for L = 3k. We may see that
L-cut is k+1 since we may delete these edges but also the bottom ones. On the other hand L-flow is at most 2.

Figure 6.2: Example of L-bounded flow. Where there is 2k bottom vertices and k upwards in each triangle.
Cuts are represented by multi edges that are dashed.

Observation. Every L-bounded s− t path uses at least k-edges from the bottom so max L-flow is at most 2.

Therefore the difference between L-cut and L-flow can be at least
√
n.

28

6.2 Approximation for L-cut
Consider the following LP relaxation (denoted as (D)). Alternatively the ILP will surely solve the problem.
Lets denote PL as the set of all L-bounded s− t paths.

min
∑
e∈E

xe∑
x∈p

xe ≥ 1 ∀p ∈ PL

xe ≥ 0 ∀e ∈ E

Also we can see what is the is the dual to this LP. Which will indeed solve L-flows. And we will denote it
as (P).

max
∑
p∈PL

fp∑
p:e∈p∈PL

fp ≤ 1 ∀e ∈ E

fp ≥ 0 ∀p ∈ PL

We may ask ourselves what is the integrality gap? From the instance shown on the picture 6.2 we already
saw that the max L-flow is 2 and min L-cut is about c

√
n. Because of the duality we know the L-flow is the

same as fractional L-cut, therefore the integrality gap is ≥ Ω(
√
n).

6.2.1 L-approximations
We can create multiple quite simple algorithms for solving such problem. These all will be approximation
algorithms.

Algorithm 7 (1) L-bounded cut approximation
Require: G = (V,E)
Ensure: L-bounded cut.

1: while ∃L-bounded s− t path p in G do
2: Remove all edges of p.
3: end while

Observation. While the OPT ≥ k therefore it is L-approximation. Since the k is the number of L-paths.

Algorithm 8 (2) L-bounded cut approximation
Require: G = (V,E)
Ensure: L-bounded cut.

1: while dg(s, t) ≤ L do
2: F := min cut in a subgraph of shortest paths.
3: G = G \ F
4: end while

We may clearly see that |F | ≤ opt L− cut. Because we always need to delete some of these edges. We also
always increase the shortest path by 1. Therefore it is an L-approximation since it is at max L steps in the
algorithm and for each it is at most the optimum.

Algorithm 9 (3) L-bounded cut approximation
Require: G = (V,E)
Ensure: L-bounded cut.

1: Solve (P).
2: F := {e ∈ E :

∑
p:e∈p fp = 1}

In other words all saturated edges will form the L-cut. Now if F wouldn’t be an L-cut then the maximal flow
was not maximal, since there is an L-path with non-saturated edge. Also |F | ≤ L(maxL−flow) that is because

29

Algorithm 10 (4) L-bounded cut approximation
Require: G = (V,E)
Ensure: L-bounded cut.

1: Solve (D).
2: F :=

{
e ∈ E : xe ≥ 1

L

}
every unit of a flow can saturate at most L edges. And due to the duality |F | ≤ L(maxL−flow) ≤ L(minL−cut).
So once more we have obtained L-approximation.

Due to the pigeonhole principle at least one edge in L-path has to have 1
L , therefore it is a feasible solution.

Because we are scaling the solution by the L fraction we may see that |F | ≤ L(min fractional L−cut) ≤ L·OPT.
So we have another L-approximation.

There is an somewhat easy L/2-approximation only by combining (1) and (2). This start with (1) with
the bond lowered to L/2, then we switch to (2).

6.2.2 n2/3-approximations
Now what if we want to get approximation based on n = |V (G)| instead of L. Can we create a (n2/3)-
approximation. Firstly if L ≤ n2/3 then we are done by running L-approximation.

Otherwise we denote OPTL as the size of the optimal min L-cut. We may observe that for L′ < L it holds
that OPTL′ ≤ OPTL because all L′-paths are also L-paths.

The algorithm would be as follows. Firstly run (n2/3)-approximation from one of the four algorithms for
this parameter. This will cost O(n2/3 ·OPTL).

Then by the theorem 6 we get that l = n2/3 so the max flow is ≤ O(n2/3). Thus we can run the basic min
cut problem on the whole graph which will also cost O(n2/3 ·OPTL) and also all together will be the same cost
asymptotically.

6.3 Integrality gap
We will now create an instance for L-cut that has an integrality gap n2/3. The scheme of the instance is depicted
on picture 6.3. Firstly from s node there are n2/3 neighbors in the second layer. Next from the consecutive n1/3

nodes in the second layer have one common neighbor in the third layer. Therefore there is n1/3 nodes in the
third layer. After that it repeats for n2/3 next layers and these middle parts form a complete bipartite graph.
Then the last layer before t is the same as from s, so it is a mirror image.

This is the underline structure where we add a shortcut that skips every second layer. And lets say that
there is 2k of the shortcuts.

Let L = 3k. As in the previous instance at least half of (that is k) the shortcut must be used for L-flow.
Hence the max L-flow is at most 2. But one can prove that the following holds. Min L-cut is at least n2/3.
That is we can remove edges between two parts that form complete bipartite graph. This is only a sketch and
it does not get into a details.

All in all this particular instance has integrality gap O(n2/3).

6.4 L-flow
In this section we will take a look at an algorithm for L-flow that would be fast and won’t used LP. As it turns
out there is as of now only an approximation scheme, which is fully polynomial time approximation scheme
(FPTAS for short). Now y(e) is the value for min cut in (D) and c(e) the capacity for edge e. Then x(p) is the
same as fp in (P).

Lemma 12. x scaled down by log1+ε
1+ε
δ is a feasible solution.

Theorem 11. The scaled flow is (1 + ε)-approximation.

Few remarks. Firstly this algorithm can be done by using Dijkstra’s algorithm on the layered graph, which
is similiar to the one already mentioned. That is L layers and finding shortest path from (s, 0) to (t, L). Other
remark is that indeed this does not use LP.

Sometimes this type of algorithm is called Multiplicative weight update algorithm. Which can also be applied
for the multi-commodity flow. Intuitively the algorithm avoids heavily used edges and prefer spreading the
flows.

30

s t

Figure 6.3: Instance of an L-cut with integrality gap n2/3.

Algorithm 11 FPTAS for maxL-flow
Require: G = (V,E)
Ensure: maxL-bounded flow.

1: ε > 0 ∀e ∈ E, δ = δ(ε) ∀p ∈ PL

2: while the y-shortest path p ∈ PL has length < 1 do
3: c = mine∈p c(e)
4: x(p) = x(p) + ε

5: y(e) = y(e)
(
1 + εc

c(e)

)
∀e ∈ p

6: end while
7: return x

31

	Introduction
	Network flow
	Min s,t-cut

	Multi-commodity problem
	Multi cut problem
	Example
	Preparation for algorithm
	Pipe cut algorithm
	How to solve LP
	Is there any better approximation?

	The Sparsest cut problem
	Concurrent multicommodity flow
	Metric spaces
	Applications
	Minimum cut linear arrangement

	Max cut
	Edge disjoint path problem
	Edge disjoint path problem and flow number
	Bounded greedy algorithm
	NP hardness of the problem
	2-DIR-EDP is NP-hard

	L-bounded cuts
	L-bounded flow
	Approximation for L-cut
	L-approximations
	n2/3-approximations

	Integrality gap
	L-flow

