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Chapter 1

Introducing

Firstly we will start by the introduction to the main characters, which are firstly intersection defined graph
classes and secondly characterization of chordal graphs.

1.1 Intersection defined graph classes
Definition 1. The intersection graph of a set family A is the graph

IG(A) = (A, {ab : a 6= b, a ∩ b 6= ∅, a, b ∈ A}).

Definition 2. Let M be a family of sets. We say that a graph G is an intersection graph of (members of) M
if G is isomorphic to the graph IG(A) for some family A whose all elements belong to M. We write

IG(M) = {IG(A) : A ⊆ M}.

Observation. For every graph G and every set family M, G ∈ IG(M) if and only if there is a mapping
f : V (G) → M such that uv ∈ E(G) iff f(u) ∩ f(v) 6= ∅ holds true for all pairs of distinct vertices u, v of G.

Observation. For every family M (containing at least one nonempty set), it holds that IG(M contains all
complete graphs and is hereditary (i.e., every induced subgraph of every graph from IG(M) also belongs to
IG(M)).

1.1.1 Examples
In many cases, the members of M are defined by their geometric shape. And in most of these cases, the
members of M are arc-connected sets in the plane.

• Interval graphs INT = IG({intervals on a line})

• Circle graphs CIR = IG({chords of a circle})

• Circular arc graphs CA = IG({arcs on a circle})

• Permutation graphs PER = IG({segments connecting two parallel lines})

• Function graphs FUN = IG({curves connecting two parallel lines})

• Polygon circle graphs PC = IG({polygons inscribed in a circle})

• Segment graphs SEG = IG({straight-line segments in the plane})

• Convex graphs CONV = IG({convex sets in the plane})

• String graphs STRING = IG({curves in the plane})
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(a) Drawn intervals. (b) Corresponding graph.

Figure 1.1: Example of a graph from INT class.

(a) Drawn permutations. (b) Corresponding graph.

Figure 1.2: Example of a graph from PER class.

1.2 Chordal graphs
Definition 3. A graph is chordal if it does not contain any cycle of length greater than three as an induced
subgraph.

Definition 4. A vertex u of a graph G is simplicial if G[NG(u)] is a clique.

Definition 5 (PES Dog). A perfect elimination scheme for a graph G is a linear ordering u1, u2, . . . , un of
its vertices such that for every i, ui is simplicial in the induced subgraph G[{u1, u2, . . . , ui}].

Lemma 1. Every minimal vertex cut in a chordal graph induces a clique.

Proof. Let A ⊂ V (G) be a minimal vertex cut, and suppose u, v be two vertices of A. These vertices are
connected by a path in each component of G \ A. If u and v were not adjacent, a pair of shortest such paths
would give rise to an induced cycle of length greater than 3 in G.

Lemma 2. Every chordal graph, which is not a complete graph, contains two nonadjacent simplicial vertices.

Proof. By induction. If G is a complete graph, the claim of the lemma is fulfilled. If G is not complete, it has
a vertex cut, say A. Let B be a connected component of G \ A, and set G1 = G[B ∪ A] and G2 = G \ B. By
induction hypothesis, each of G1, G2 is either complete or has two nonadjacent simplicial vertices. Thus each
of them has a simplicial vertex which does not belong to A. Each of these is then also simplicial in entire G,
and they are clearly nonadjacent.

Corollary. Every nonempty chordal graph contains a simplicial vertex.

Definition 6 (Clique-tree decomposition). A clique-tree decomposition of a graph G is a tree T = (Q, F ),
with Q being the set of all maximal cliques of G, such that for every vertex u ∈ V (G), the subgraph T [{Q : u ∈
Q ∈ Q}] is connected.

Warning!! The vertex set of a clique-tree decomposition of a graph G is uniquely defined, but
not necessarily the edge set!!

Theorem 1. For any graph G, the following statements are equivalent:

1. G is chordal,

2. G allows a PES.

3. G has a clique-tree decomposition, and

4. G is an intersection graph of subtrees of a tree.
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Proof. ”1. ⇒ 2.” By induction on the number of vertices, using Lemma 2.
”2. ⇒ 3.” By induction on the number of vertices again. Suppose G′ = G\vn has a clique-tree T = (Q′, F ′).

If Q′ = NG(vn) ∈ Q′ , then Q = NG[vn] is a maximal clique in G,Q = (Q′ \ {Q′}) ∪ {Q} and T = (Q, F ) is a
clique-tree for G, where F = (F ′\{Q′P : P ∈ Q′})∪{QP : Q′P ∈ F ′}. If, on the other hand, Q′ = NG(vn) /∈ Q′

, then Q = Q′ ∪NG[vn] and (Q, F ′ ∪NG[vn]P ) is a clique-tree for G for any P ∈ Q′ such that NG(vn) ⊂ P .
”3. ⇒ 4.” Given a clique-tree decomposition T = (Q, F ), define Tu = T [{Q : u ∈ Q ∈ Q}] for u ∈ V (G).

Clearly V (Tu) ∩ V (Tv) 6= ∅ iff u and v belong to the same maximal clique of G, which happens if and only if u
and v are adjacent in G.

”4. ⇒ 1.” Let G be the intersection graph of a collection {Tu}u∈V (G) of subtrees of a tree T . Suppose
v1, v2, . . . , vk be an induced cycle in G, with k > 3. Then the subtrees Tv1

and Tv3 are vertex disjoint, and
hence there is an edge e ∈ E(T ) which lies on every path connecting Tv1 and Tv3 in T . This edge separates T
into T1 and T2 such that Tv1 and Tv3 belong to different components of T \ e, say, Tv1 ⊆ T1 and Tv3 ⊆ T2. One
can show by induction on i that for every i ≥ 3, Tvi ⊆ T2. But then Tvk and Tv1 must be disjoint, contradicting
the assumption that v1vk ∈ E(G).

Corollary. Chordal graphs are perfect (i.e., χ(H) = ω(H) for every induced subgraph H of G).

Proof. Consider a PES u1, u2, . . . , un for G and color the vertices from u1 to un by the First Fit Method (we
try to use minimal color if we cannot use any of them, create a new color).

6



Chapter 2

Interval, permutation and function
graphs

2.1 Interval graphs
Definition 7. A graph is an interval graph if it is isomorphic to the intersection graph of a collection of
intervals on a line.

Observation. Every interval graph has an interval representation in which all of the intervals are closed.

Definition 8 (Clique-path decomposition). A clique-path decomposition of a graph is a clique-tree decompo-
sition in which the underlying tree is a path.

Theorem 2. For any graph G, the following statements are equivalent:

1. G is an interval graph,

2. G has a clique-path decomposition, and

3. G is an intersection graph of subpaths of a path.

Proof. ”1. ⇔ 3.” is obvious.
”1. ⇒ 2.” Assume Iu, u ∈ V (G) is an interval representation of G. Use the fact that intervals on a line have

the Helly property, i.e., if any two of a collection of intervals have a nonempty intersection, then all of them
have a nonempty intersection. In other words, if Qi ∈ Q is a maximal clique of G, then there exists a point
Pi which belongs to

⋂
u∈Qi

Iu. Moreover, for every v /∈ Qi, Pi /∈ Iv, since Qi is a maximal clique. (E.g., the
rightmost of the left endpoints of the intervals Iu, u ∈ Qi is a good candidate for Pi.) Order the cliques of Q as
Q1, Q2, . . . , Qk so that P1 < P2 < · · · < Pk. Then the path Q1Q2 . . . Qk is a clique-path decomposition of G.

”2. ⇒ 3.” Given a clique-path decomposition P = (Q, F ), define Pu = P [{Q : u ∈ Q ∈ Q}] for u ∈ V (G).
Clearly V (Pu) ∩ V (Pv) 6= ∅ iff u and v belong to the same maximal clique of G, which happens if and only u
and v are adjacent in G.

2.2 Comparability graphs
Definition 9. A graph G is a comparability graph if there exists a partial order P = (V (G),≤) on the vertex
set of G (i.e., an antireflexive, antisymmetric and transitive binary relation) such that for any two
vertices u, v ∈ V (G), uv ∈ E(G) if and only if u ≤ v or v ≤ u (i.e., if u and v are comparable in P ). The class
of comparability graphs will be denoted by CO.

Observation. A graph is a comparability graph if and only if its edges can be transitively oriented.

Theorem 3. Comparability graphs are perfect.

Proof. Because G ∈ CO then ∃P = (V,≤). We create a Haase diagram. Then we may see that cliques are
chains and also independent sets are the antichains. Therefore we color every layer with one color and it is the
same as the size of the largest clique.

Notation. If A is a graph class, the symbol co −A is used to denote the class containing the complements of
the graphs in A.
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Observation. If A ⊆ B, then co −A ⊆ co − B.

Theorem 4. All equivalencies hold:

1. FUN = co − CO

2. PER = CO ∩ co − CO

3. INT = CHOR ∩ co − CO

Proof. 1. ”FUN ⊆ co-CO”: Given a collection of curves joining two vertical parallel lines (and lying in the
stripe between them), for any two non-crossing curves, it is uniquely determined which one lies above
the other one (this follows from the Jordan curve theorem), and this gives a transitive orientation of the
complement of the intersection graph of this collection.
”co-CO ⊆ FUN”: Let G = (V,E) be a graph and let P = (V,≤) be a partial order which corresponds
to a transitive orientation of the complement of G. If d is the dimension of P , P is the intersection of d
linear orders L1, L2, . . . , Ld of V . In the plane, draw d distinct parallel (vertical) lines l1, l2, . . . , ld, and
on each li, mark distinct points Piu, u ∈ V bottom up in the order Li. Consider piece-wise linear curves
c(u) = P1uP2u . . . Pdu, for u ∈ V . If uv ∈ E, u and v are incomparable in P , and hence there are indices
i and j such that u <Li v and v <Lj u, in other words Piu is below Piv, while Pju is above Pjv. Hence
the curves c(u) and c(v) cross somewhere between li and lj . If, on the other hand, uv /∈ E, uv is an
edge of the complement of G and hence u and v are comparable in P , say, u ≤ v. But then u <Li

v for
every i = 1, 2, . . . , d, and for each i = 1, 2, . . . , d− 1, the curve c(u) lies below the curve c(v) in the stripe
between li and li+1. Thus c(u) and c(v) are disjoint.

2. Note first that co-PER ⊆ PER. Indeed, given a permutation representation of a graph, swap the order
of the endpoints on one of the bounding lines to obtain a representation of the complement of the given
graph. Then PER = co-(co-PER) ⊆ co-PER, and hence PER = co-PER.
”PER ⊆ CO ∩ co-CO”: Obviously PER ⊆ FUN = co-CO. Then the above small observation implies PER
= co-PER ⊆ co-(co-CO) = CO as well.

”CO ∩ co-CO ⊆ PER”: Suppose both G and its complement can be transitively oriented, say
−→
E1 be a

transitive orientation of G and
−→
E2 a transitive orientation of the complement −G of G. Then

−→
E1 ∪

−→
E2 is

a transitive orientation of the complete graph KV (G) on the vertex set of G, i.e., a linear ordering of the
vertices of G. And so is

−→
E1

−1 ∪
−→
E2. Place the vertices of G on two parallel lines, on one of them in the

linear order given by
−→
E1 ∪

−→
E2, on the other one in the order given by

−→
E1

−1 ∪
−→
E2, and connect the two

occurrences of a vertex u by a straight-line segment called s(u), for every vertex u ∈ V (G). If uv ∈ E(G),
then the pair u, v is ordered differently on the two lines (by

−→
E1 on one of them and by

−→
E1

−1 on the other
one) and the segments s(u), s(v) cross each other somewhere between the two lines. If uv /∈ E(G), the
pair u, v is ordered the same way (by

−→
E2) on both of the lines, and thus the segments s(u) and s(v) are

disjoint. So {s(u)}u∈V (G) is a permutation representation of G.

3. ”INT ⊆ CHOR ∩ co-CO”: Let {I(u)}u∈V (G) be an interval representation of a graph G. Define a transitive
orientation

−→
E2 of the non-edges of G by setting uv ∈

−→
E2 if max I(u) < min I(v). Thus G ∈ co-CO. The

fact that G ∈ CHOR follows from the fact that

INT = IG({connected subgraphs of paths}) ⊆

⊆ IG({connected subgraphs of trees}) = CHOR.

”CHOR ∩ co-CO ⊆ INT”: Let G be a chordal graph which allows a transitive orientation
−→
E2 of its

non-edges. Define a binary relation < on the set Q of maximal cliques of G by setting

Q < Q′ ⇔ ∃u ∈ Q∃v ∈ Q′ : uv ∈
−→
E2.

Claim 5. The relation < is a partial order on Q.

Proof of claim. We will show all properties of partial order.

• Antireflexivity: Each Q ∈ Q is a clique, so there are no two vertices u, v ∈ Q that would form a
non-edge of G. Hence Q 6< Q.
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• Antisymmetry: Suppose for the contrary that there are u ∈ Q, v ∈ Q′ s.t. uv ∈
−→
E2, and another

pair x ∈ Q, y ∈ Q′ s.t. yx ∈
−→
E2. First observe that u 6= x and v 6= y (if u = x, the transitivity of

−→
E2 would imply yv ∈

−→
E2, which is impossible; if v = y, the transitivity of

−→
E2 would imply ux ∈

−→
E2,

which is again impossible). Next observe that both uy and xv must be edges of G (if uy /∈ E(G),
then either uy ∈

−→
E2, or yu ∈

−→
E2, yielding ux ∈

−→
E2 in the former case and yv ∈

−→
E2 in the letter one,

both contradicting the fact that Q and Q′ are cliques of G; the case of xv /∈ E(G) is analogous).
Lastly, we conclude that G[{u, v, x, y}] ' C4 , contradicting the assumption that G is chordal.

• Transitivity: Suppose Q < Q′ < Q′′ and let u ∈ Q, v, x ∈ Q′ and y ∈ Q′′ be vertices such that
uv, xy ∈

−→
E2. If v = x, the transitivity of

−→
E2 implies uy ∈

−→
E2, hence Q < Q′′. If v 6= x, one of ux, vy

must be a non-edge (otherwise G[{u, v, x, y}] would be an induced cycle of length 4, contradicting the
assumption that G is chordal). If ux /∈ E(G), ux ∈

−→
E2 and the transitivity of

−→
E2 implies uy ∈

−→
E2. If

vy /∈ E(G), vy ∈
−→
E2 and the transitivity of

−→
E2 implies uy ∈

−→
E2. In either case, Q < Q′′.

Claim 6. The relation < is a linear ordering of Q.

Proof of claim. Let Q 6= Q′ be two different maximal cliques of G. Their maximality implies that none
of them is a subset of the other one. Hence there is a vertex u ∈ Q which does not belong to Q′ . If u
were adjacent to all vertices of Q′, Q′ ∪ {u} would be a clique of G, contradicting the maximality of Q′ .
Hence there is a v ∈ Q′ such that uv /∈ E(G). Then either uv ∈

−→
E2 or vu

−→
E2, thus Q < Q′ or Q′ < Q.

Claim 7. Let Q = {Q1 < Q2 < · · · < Qk} be the maximal cliques of G ordered by <. Then PG =
(Q, {QiQi+1 : i = 1, 2, . . . , k − 1}) is a clique-path decomposition of G, and hence G ∈ INT.

Proof of claim. Indeed PG is a path whose nodes are the maximal cliques of G. It remains to show that
vertices of G appear in these cliques consecutively. Suppose Q < Q′ < Q′′ and u ∈ Q ∩ Q′′. If there
were a vertex v ∈ Q′ nonadjacent to u, we would have uv ∈

−→
E2 because of Q < Q′ and vu ∈

−→
E2 because

of Q′ < Q′′, contradicting the antisymmetry of
−→
E2. Hence u is adjacent to all vertices of Q′ , and thus

u ∈ Q′ follows from the maximality of Q′.

The last claim proved the theorem as well.
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Chapter 3

Interval filament graphs

Definition 10. Given a half-plane π with a border-line l, an interval filament in π is a simple curve with
endpoints on l, its interior lying in π and within the stripe determined by lines perpendicular to l and passing
through the endpoints of the curve. The class of interval filament graphs is IFA = IG{interval filaments in
a half-plane}.

l

Figure 3.1: An illustration to the definition. The name “interval-filament” comes from the fact that the curve
“lives above” the interval that is determined by the endpoints of the filament on the boundary line l.

Comment. If the base intervals of two interval-filaments overlap (i.e., they are not disjoint, but none of them
is a subinterval of the other one), the filaments necessarily cross each other and the corresponding vertices in
the intersection graph are adjacent (cf. the blue and red filaments in Fig. 3.2). On the other hand, if one of the
base intervals is included in the other one, their filaments may or may not be disjoint (cf. the blue and yellow
filaments for the disjoint case, and the red and green filaments for the non-disjoint one, both in Fig. 3.2).

l

Figure 3.2: An illustration to the possible relative positions of interval-filaments.
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Observation. IFA contains INT, CHOR, FUN, CIR, CA, and PC.

Definition 11 (class A-mixed). Let A be a graph class. A graph G = (V,E) belongs to the class A-mixed if its
edge set allows a partition E = E1 ∪ E2 and a transitive orientation

−→
E2 of E2 such that for any three vertices

u, v, w ∈ V (G), uv ∈
−→
E2 and vw ∈ E1 imply uw ∈ E1.

Theorem 8. co-IFA = (co-INT)-mixed.

Proof. ”⊆”: Let G = (V,E) ∈ IFA and let {fu : u ∈ V } be an interval-filament representation of G, with fu
being a filament with its base interval Iu lying on a common line l. Then its complement −G is in co-IFA, and
our goal is to show that −G ∈ (co-INT)-mixed. Define

E1 = {uv : Iu ∩ Iv = ∅}

and

E2 = {uv : ((Iu ⊆ Iv) ∨ (Iv ⊆ Iu)) ∧ (fu ∩ fv = ∅)}.

Then −→
E2 = {uv : (Iu ⊆ Iv) ∧ (fu ∩ fv = ∅)}

is a transitive orientation of E2, E1 ∪ E2 =
(
V
2

)
\ E, (V,E1) ∈ co-INT and E1 and

−→
E2 satisfy the mixing

property. Hence −G ∈ (co-INT)-mixed.
”⊇”: Consider a graph in (co-INT)-mixed and denote its complement by G = (V,E). Our goal is to show

that −G ∈ co-IFA, or equivalently that G ∈ IFA. Since −G is (co-INT)-mixed, the non-edges of G can be
partitioned into disjoint sets E1, E2 so that G1 = (V,E1) ∈ co-INT, and E2 allows a transitive orientation

−→
E2

such that E1 and
−→
E2 satisfy the mixing property. Fix this partition E1, E2 and the transitive orientation

−→
E2.

Consider an interval intersection representation R = {Iu = [lu, ru] : u ∈ V } of −G1 . We will only consider
representations in which all end-points of the intervals are different points on the base line. For two vertices u, v ∈
V , there are three possibilities for the relative position of the intervals Iu, Iv – the intervals are disjoint (when
ru < lv or rv < lu), or in inclusion (when lu < lv < rv < ru or lv < lu < ru < rv), or overlapping (when lu <
lv < ru < rv or lv < lu < rv < ru). Given a representation R, we set Rdisjoint = {uv : Iu and Iv are disjoint},
Rinclusion = {uv : Iu and Iv are in inclusion} and Roverlap = {uv : Iu and Iv are overlapping}. Observe that R
is an interval intersection representation of −G1 if and only if Rdisjoint = E1. In such a case, Rinclusion∪Roverlap =
E ∪ E2.

l

disjoint in inclusion overlapping

Figure 3.3: An illustration to the possible relative positions of pairs of intervals.

Claim 9. If E1 and E2 satisfy the mixing condition, −G1 has an interval intersection representation such that
for every two vertices u, v ∈ V , uv ∈

−→
E2 implies Iu ⊆ Iv.

Proof of claim. Let us call a violation a pair of endpoints of intervals Iu, Iv with uv ∈
−→
E2 such that lu < lv or

rv < ru. Observe that overlapping intervals provide one violation, while intervals in inclusion provide either 0
(when Iu ⊆ Iv) or 2 (when Iv ⊆ Iu) violations.

Consider a representation R with the smallest possible number of violations. We will prove that this number
is zero, i.e., that this R satisfies the statement of the Claim.

Suppose, for the contrary, that R has k > 0 violations. For every violation, count the number of endpoints
of other intervals lying between the two endpoints forming this violation, and let m be the minimum of these
counts over all violations. Assume that R is chosen such that m is minimum possible among all representations
with k violations. In the case analysis which follows, we assume that the violation achieving this minimum
number of endpoints is formed by the right endpoints of Iu and Iv. If it is achieved by their left endpoints, the
arguments are similar (and symmetric).

Case B1. m = 0 Let rv < ru, with uv ∈
−→
E2, be a violation such that there are no other endpoints between rv

and ru. Change the representation R to R′ by changing the interval Iv to I ′v = [lv, ru+ ε] for a positive ε small
enough so that no endpoint of any interval is between ru and ru + ε (other intervals remain the same as in R).
Then R′ is still an interval intersection representation of −G1, but it has k − 1 < k violations, contradicting
the assumption that k was the minimum possible number of violations in an interval representation of −G1.
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Case B2. m > 0 Let rv < ru, with uv ∈
−→
E2, be a violation with m endpoints between rv and ru. Let P be the

leftmost of these endpoints.

Subcase B2α. P is the right endpoint of an interval. Let w ∈ V be such that P = rw. Change the represen-
tation R to R′ by changing the interval Iv to I ′v = [lv, rw+ε] for a positive ε small enough so that no endpoint
of any interval is between rw and rw + ε. Then R′ is still an interval intersection representation of −G1. The
number of endpoints between r′v and ru is m − 1 < m. If R′ had the same number of violations as R, this
would contradict the assumption of minimality of m. Thus R′ must have more than k violations. The only
new violation can be formed by rw < r′v, which means that vw ∈

−→
E2. Then the transitivity of

−→
E2 implies

that uw ∈
−→
E2 and rw < ru is a violation in R with m − 1 < m endpoints between rw and ru, contradicting

the assumption on minimality of m.
Subcase B2β. P is the left endpoint of an interval. Let w ∈ V be such that P = lw. Then Iv ∩ Iw = ∅ and
hence vw ∈ E1. The mixing property applied to u, v, w then implies uw ∈ E1, which is impossible since
P ∈ Iu ∩ Iw 6= ∅.

Thus both Cases B2 and B1 lead to contradictions, and hence k = 0 and R satisfies the property described
in the Claim.

Assume we are having an interval intersection representation R guaranteed by the Claim. It follows that
E2 ⊆ Rinclusion, and hence Roverlap ⊆ E. In the first step, define, for every vertex u ∈ V , the interval filament
fu as the half-circle with diameter Iu. At this point we observe the following

1. if Iu and Iv are disjoint, so are also fu and fv, which corresponds to the fact that uv ∈ E1 and thus
uv /∈ E;

2. if Iu and Iv are overlapping, fu and fv cross each other, which corresponds to the fact that uv ∈ E which
is observed above; however

3. if Iu and Iv are in inclusion, say Iu ⊆ Iv, then either uv ∈ E2 (and thus uv ∈
−→
E2) or uv ∈ E, but

fu ∩ fv = ∅ in both cases.

We will now modify some of the filaments in order to make filaments of case 3 intersect if the corresponding
vertices are adjacent in G. For every pair of vertices u, v ∈ V such that Iu ⊆ Iv and uv ∈ E, choose a line
lu perpendicular to the base line l and crossing it in an interior point of Iu. Then pull the filament fu up
along lu to make it cross fv (cf. an illustrative Fig. 3.4a). To avoid creating undesired intersections with other
filaments, we must modify also those filaments which cross the line lu between its crossings with fu and fv.
Imagine this as a dynamic process, as if fu would slowly grow a spike upward and this spike would be pushing
every filament fw in front of it, if w is such that uw /∈ E. Moreover, if there were another filament fz above
fw such that wz /∈ E, fz would be pushed by fw etc. See Fig. 3.4b. We claim that in this way no undesired
intersections arise. Such could be only between one of the pushed filaments, say fy, and the filament fv. If fy
is pushed, there is a sequence of vertices u0 = u, u1, . . . , ut = y such that fui−1

pushes fui
for i = 1, 2, . . . , t, i.e.,

ui−1ui /∈ E and Iui−1
⊆ Iui

, hence ui−1ui ∈
−→
E2. Transitivity of

−→
E2 then implies uy ∈

−→
E2. Similarly, if fy should

not cross fv, i.e., yv /∈ E, we would have yv ∈
−→
E2. But that would imply uv ∈

−→
E2 contradicting the assumption

that uv ∈ E.

l

lu

fv

fu

(a) Crossing filaments.

l

fv

fu

(b) Pushing outwards.

Figure 3.4: Final modification of interval-filaments in the representation.
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Chapter 4

Cliques and independent sets

We will show the computational complexity of the following optimization problems:

Clique

Input: A graph G.

Output: ω(G).

and

Independent Set

Input: A graph G.

Output: α(G).

and their weighted variants

Weighted Clique

Input: A graph G and a non-negative weight function w : V (G) → R+
0 .

Output: A clique C ⊆ V (G) which maximizes w(C) =
∑

u∈C w(u).

and

Weighted Independent Set

Input: A graph G and a non-negative weight function w : V (G) → R+
0 .

Output: An independent set A ⊆ V (G) which maximizes w(A) =
∑

u∈A w(u).

Our goal is to show that for many of the intersection-defined graph classes that we have seen so far, these
problems can be solved in polynomial time. For the sake of brevity, we denote by ωw(G) the maximum possible
weight w(C) over all cliques C in G, and by αw(G) the maximum possible weight w(A) over all independent
sets A in G.

4.1 Interval graphs
Theorem 10. Weighted Clique can be solved in polynomial time for interval graphs.

Proof. Interval graphs have only linearly many maximal cliques. We look at all of them and compare their
weights.

Theorem 11. Weighted Independent Set can be solved in polynomial time for interval graphs.

Proof. Suppose we are given an interval intersection representation R = {Iu = [lu, ru] : u ∈ V } of a graph
G = (V,E), equipped with a weight function w. We may assume that all endpoints of the intervals are different.
Number the endpoints P1, P2, . . . , P2n so that Pi < Pi+1 for i = 1, 2, . . . , 2n− 1. Use dynamic programming to
compute wi which is defined as the maximum possible weight of an independent set A in G such that ru < Pi

for all u ∈ A. This can be computed as follows:

Corollary. Weighted Clique and Weighted Independent Set can both be solved in polynomial time on
co-INT graphs.
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1: wi := 0
2: for i := 1 to 2n do
3: if Pi is the left endpoint of an interval then
4: wi+1 := wi

5: else
6: let u ∈ V be such that ru = Pi and let j be such that Pj = lu;
7: set wi+1 = max{wj + w(u), wi}
8: end if
9: end for

10: return w2n+1

4.2 Comparability graphs
Theorem 12. Weighted Clique can be solved in polynomial time for comparability graphs.

Proof. Given a transitive orientation
−→
E of G = (V,E), order the vertices linearly V = {v1, v2, . . . , vn} in a

topological sorting according to
−→
E (i.e., vivj ∈

−→
E implies i < j). For each i, set Wi = {j : vjvi ∈ E} and let

wi be the maximum weight w(C) over all cliques C ⊆ Wi ∪ {vi}. Note that if w(vi) > 0, each clique attaining
the maximum weight contains vi, and we may consider without loss of generality only the cliques that contain
vi even if w(vi) = 0. The values wi, i = 1, 2, . . . , n can be computed recursively as follows

1: for i := 1 to n do
2: wi := maxj∈Wi wj + w(vi)
3: end for

and clearly ωw(G) = maxn
i=1wi.

Theorem 13. Weighted Independent Set can be solved in polynomial time for
comparability graphs.

Proof. Given a transitive orientation
−→
E of G = (V,E), consider the partial order P = (V,

−→
E ) determined by

this orientation. The weighted version of Dilworth theorem yields that αw(P ) is equal to the minimum cost of
a flow in the network N = (V ∪ {s, t}, E ∪ {su, ut : u ∈ V }) with vertex demands f(u) ≥ w(u), and this can be
computed in polynomial time by network flow algorithms.

Corollary. Weighted Clique and Weighted Independent Set can both be solved in polynomial time on
function (= co-comparability) graphs.

4.3 Interval-filament graphs
In this section we show the strongest results. Note, however, that we need the input graph to be given with an
interval-filament representation (or, equivalently, with a partition of its edge set satisfying the mixing property).

Theorem 14. Weighted Clique can be solved in polynomial time for interval-filament graphs, if an interval-
filament representation is provided on the input.

Proof. Suppose R = {fu : u ∈ V } is an interval-filament representation of G, with Iu being the base interval of
the filament fu for each u ∈ V , and let w be the input weight function. We may suppose that the endpoints of the
base intervals are mutually distinct, and we number them P1, P2, . . . , P2n from left to right. We further introduce
points Q1, Q2, . . . , Q2n−1 so that Qi lies between Pi and Pi+1 for i = 1, 2, . . . , 2n − 1. Set Vi = {u : Qi ∈ Iu}.
If C ⊆ V is a clique in G, the intervals Iu, u ∈ C have a non-empty intersection, and hence C ⊆ Vi for some
i. Thus ωw(G) = max2n−1

i=1 ωw(G[Vi]) and each ωw(G[Vi]) can be computed in polynomial time by Theorem 13
since G[Vi] is a co-comparability graph.

Theorem 15. Suppose Weighted Clique can be solved in polynomial time for graphs from a hereditary graph
class A. Then it can be solved in polynomial time for A-mixed graphs, provided a partition of the edges of the
input graph that satisfies the mixing property is a part of the input.

Proof. Given a graph G = (V,E), a weight function w → R+
0 and a partition E = E1∪E2 such that (V,E1) ∈ A,

together with a transitive orientation
−→
E2 of E2 which satisfies the mixing property, order the vertices V =

{v1, v2, . . . , vn} in a topological sorting with respect to
−→
E2. For every vertex vi ∈ V , set Wi = {vj : vjvi ∈

−→
E2}.

Let wi = ωw(G[Wi ∪ {vi}]) and let Ci be a clique in G[Wi ∪ {vi}] of weight wi.

14



Claim 16. Let M ⊆ Wi be a maximum weighted clique in the graph (Wi, E1 ∩
(
Wi

2

)
) with respect to the weight

function w̄(vj) = wj for vj ∈ Wi. Then

C =
⋃

vj∈M

Cj ∪ {vi}

is a maximum weighted clique in G[Wi ∪ {vi}] with respect to w and its weight is wi =
∑

j:vj∈M wj +w(vi).

Proof of claim. First we show that C is a clique. Due to transitivity of
−→
E2, for every vj ∈ M and every x ∈ Cj ,

xvi ∈
−→
E2, and hence xvi ∈ E2 ⊆ E. Hence C is a clique if |M | = 1. If |M | > 1, consider vj , vh ∈ M and x ∈ Cj ,

y ∈ Ch. Suppose x 6= vj . The mixing property, when applied to x, vj , vh, then implies xvh ∈ E1. If y 6= vh, the
mixing property, when applied to y, vh, x, implies yx ∈ E1. These situations cover all pairs of vertices in C.

Next we show that any two Cj , Ch are disjoint. If there were an x ∈ Cj ∩Ch, this x would be different from
both vj and vh. But then xvj ∈

−→
E2 and vjvh ∈ E1 imply (via the mixing property) xvh ∈ E1, contradicting the

assumption x ∈ Ch. It further follows that w(C) =
∑

j:vj∈M

∑
x∈Cj

w(x) + w(vi) =
∑

j:vj∈M wj + w(vi).
Finally we show that the weight of C is maximum possible. Suppose D ⊆ Wi∪{vi} is a clique in G[Wi∪{vi}]

of maximum weight with respect to w. Obviously vi ∈ D. Denote D̄ = D\{vi} and consider Ḡ = (D̄,
−→
E2∩D̄×D̄).

This Ḡ is an acyclic graph. Denote by M̄ the sinks of Ḡ. Every other vertex of D̄ is connected to some vertex
of M̄ by a directed path, and hence, due to transitivity of

−→
E2, by a directed edge from

−→
E2. Set D̄j = {u : uvj ∈−→

E2 ∧ u ∈ D̄} and Dj = D̄j ∪ {vj}, for vj ∈ M̄ . The mixing property implies that for j 6= h, Dj ∩Dh = ∅. Since
Dj is a clique in G[Wj ∪ {vj}], it is w(Dj) ≤ wj = w̄(vj). All vertices of M̄ are sinks of Ḡ, and thus any two
of them are connected by an edge of E1. Hence M is a clique in (Wi, E1 ∩

(
Wi

2

)
), and therefore w̄(M̄) ≤ w̄(M).

Thus

w(D) = w(vi) +
∑

j:vj∈M̄

∑
x∈Dj

w(x) = w(vi) +
∑

j:vj∈M̄

w(Dj) ≤ w(vi) +
∑

j:vj∈M̄

w̄(vj)

= w(vi) + w̄(M̄) ≤ w(vi) + w̄(M) = w(C)

and C is indeed a maximum weighted clique with respect to the weight function w.

Having proved the observations above, we can now summarize the algorithm for finding a maximum weighted
clique in an A-mixed graph. Note that the preprocessing trick with adding a dummy vertex vn+1 is introduced
for the comfort of a more succinct write-up of the algorithm.

Algorithm 1 Weighted Clique in A-mixed graphs

Require: A graph G = (V,E), a partition E = E1 ∪ E2 such that (V,E1) ∈ A, a transitive orientation
−→
E2 of

E2 such that E1,
−→
E2 satisfy the mixing property, and a weight function w : V → R+

0 .
Ensure: The weighted clique number ωw(G) of G and a maximum weighted clique C.

1: Order the vertices of G linearly in a topological sorting with respect to
−→
E2 as V = {v1, v2, . . . , vn} and add

a dummy vertex vn+1 with weight w(vn+1) = 0 and edges vivn+1 ∈ E2, all of them being oriented from vi
to vn+1, for i = 1, 2, . . . , n.

2: for i = 1 . . . n+ 1 do
3: wi := 0, Ci := ∅
4: end for
5: for i = 1 . . . n+ 1 do
6: Wi := {vj : vjvi ∈

−→
E2}

7: for vj ∈ Wi do
8: w̄(vj) := wj

9: end for
10: find maximum weighted clique M in (Wi, E1 ∩Wi ×Wi) w.r.t. w̄
11: Ci := ∪j:vj∈MCj ∪ {vi}
12: wi :=

∑
j:vj∈M wj + w(vi)

13: end for
14: return C = Cn+1 \ {vn+1}, ωw(G) = wn+1

The correctness of the algorithm was proven in the Claim above, it may only be added here that the
introduction of the dummy vertex vn+1 does not break the mixing property of E1 and

−→
E2 and that vn+1 belongs

to every maximal clique, and hence also to every maximum weighted one, but does not affect its weight. If F (n)
is the worst-case running time of the algorithm for maximum weighted clique on A graphs, the running time of
our algorithm is majorized by nF (n).
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Corollary. Weighted Independent Set can be solved in polynomial time for interval-filament graphs, provided
a representation is given as part of the input.

Proof. We have seen that Weighted Clique is polynomial time solvable for co-INT graphs. Theorem 15
implies that it is polynomial-time solvable for (co-INT)-mixed graphs, alas for co-IFA graphs. Thus Weighted
Independent Set is polynomial-time solvable for IFA graphs.

16



Chapter 5

Recognition of Chordal graphs

It is not surprising that chordal graphs can be recognized in polynomial time. Just search for a simplicial vertex,
delete it if you find one and proceed recursively, or quit and say that the input graph is not chordal if it has no
simplicial vertex. Checking a vertex for being simplicial requires checking at most n2 pairs of vertices if they
are adjacent, hence a simplicial vertex can be found in O(n3) steps. Thus chordality can be checked in time
O(n4). However, even if the graph is dense, i.e., if it has m = Ω(n2), this naive algorithm still takes Ω(m2)
time. With more care, one can test chordality in time linear in the number of edges by the following algorithm.

Algorithm 2 LexBFS
Require: A graph G = (V,E) with n vertices.

1: T := ∅, w(x) := ∅ ∀x ∈ V
2: for i := n . . . 1 do
3: let u ∈ V \ T be a vertex with lexicographicly maximum w(u)
4: set σ(i) := u
5: T := T ∪ {u}
6: for x ∈ NG(u) ∩ (V \ T ) do
7: w(x) := w(x) ∪ {i}
8: end for
9: end for

Theorem 17. If G = (V,E) is chordal, then σ(n), σ(n− 1), ..., σ(1) is a PES Dog.

Proof. Suppose G is chordal but there exist indices i < j < h such that σ(i)σ(j) ∈ E, σ(i)σ(h) ∈ E while
σ(j)σ(h) /∈ E. Let i0 < i1 < i2 be such a triple and such that i2 is largest possible.

Let ui = σ(i), i = 1, 2, . . . , n be the ordering output by the Algorithm. Consider the step of the LexBFS
algorithm when i1 was processed. At this moment, i2 ∈ w(ui0) while i2 /∈ w(ui1). Thus ui0 and ui1 do not
have the same weights, and since ui1 was chosen for σ(i1), we must have w(ui0) <lex w(ui1). Hence there must
be i3 > i2 such that ui1ui3 ∈ E and ui0ui3 /∈ E. Let us choose i3 as the largest index with these properties.
An edge between ui2 and ui3 would imply that G[{u0, u1, u2, u3}] would be isomorphic to C4, which would
contradict the assumption that G is chordal, and thus we conclude that ui2ui3 /∈ E.

The same argument can now be used for i2 and i3 and further on:

Claim 18. For every k > 3, there exists a sequence i0 < i1 < · · · < ik such that {ui0uu1
} ∪ {uijuij+2

: j =
0, 1, 2, . . . , k − 2} are the only edges of G among these vertices.

Proof of claim. We proceed by induction on k. We have just seen that such a sequence exists for k = 4. Since
the sequence is constructed recursively, we will further assume that in each step we have chosen ik largest
possible.

For the induction step k → k + 1, we observe that at the moment when ik−1 was processed, ik was in
w(uk−2) but not in w(uk−1). Since uik−1

was chosen for σ(ik−1), it must have been w(uik−1
) >lex w(uik−2

),
and so there must be an ik+1 > ik such that uik−1

uik+1
∈ E while uik−2

uik+1
/∈ E (recall that we choose ik+1

maximum possible with this property). Suppose there is a j, 0 ≤ j ≤ k−3 such that uijuik+1
∈ E, and consider

the largest possible such j. If j = k − 3, then both uik+1
and uik−1

are adjacent to uik−3
and non-adjacent to

uik−2
and this contradicts the presumed choice of ik−1 < ik+1 as the largest possible index of this property. If

j < k− 3, then ij < ij+2 < ik+1 would be a triple violating the PES condition (since uijuij+2 , uijuik+1
∈ E and

uij+2uik+1
/∈ E) with ik+1 > i2 contradicting the choice of i0 < i1 < i2. Thus uijuik+1

/∈ E for j = 0, 1, . . . , k−2.
If uikuik+1

were an edge, G[{uih : h = 0, 1, . . . , k + 1}] would be isomorphic to Ck+2, which is impossible as G
is assumed to be chordal. This concludes the proof of the Claim.
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Since G is finite, the sequence of the properties guaranteed by the Claim cannot exist, e.g., for k > n. So
no triple of indices i < j < h violating the PES condition may exist.

With a suitable data structure, the LexBFS algorithm can be implemented to run in time linear in the
number m of edges of the input graph (the point is that this algorithm processes every edge of the graph only
once).

However, this is only one half of testing for chordality. The algorithm LexBFS outputs a linear ordering of
the vertices of G, but we need to test this ordering if it is a PES or not. This can, fortunately, also be achieved
in linear time.

Algorithm 3 TestPES Dog

Require: A graph G = (V,E) with n vertices, a linear ordering σ(i) ∈ V, i = 1, 2, . . . , n of its vertices.
Ensure: YES or NO if σ(n), σ(n− 1), . . . , σ(1) is a PES.

1: A(x) := ∅ for all x ∈ V
2: for i := 1 . . . n− 1 do
3: v := σ(i)
4: X := {x : x ∈ NG(v) ∧ σ−1(v) < σ−1(x)}
5: if X 6= ∅ then
6: u := minσ−1(X)
7: A(u) := A(u) ∪ (X \ {u})
8: end if
9: if A(v) \NG(v) 6= ∅ then

10: return NO
11: end if
12: end for
13: return YES Dog

Theorem 19. Algorithm TestPES correctly answers if a linear ordering σ(n), σ(n− 1), . . . , σ(1) is a PES for
G or not and it can be implemented in time linear in m.

Proof. For each vertex u ∈ V , the set A(u) contains vertices that should be neighbors of u if the ordering is
a PES. The point is that it is not necessary to put in A(u) all neighbors, and thus the running time can be
significantly reduced.

Claim 20. If σ(n), σ(n− 1), . . . , σ(1) is not a PES, then at least one violation gets detected.

Proof of claim. Let i < j < h be a violation (i.e., σ(i)σ(j), σ(i)σ(h) ∈ E, σ(j)σ(h) /∈ E) such that the difference
j − i is minimum possible. Let v = σ(i). Then σ(j), σ(h) ∈ X when v is processed by the algorithm. Suppose
there is a j′, i < j′ < j such that σ(j′) ∈ X. If σ(j′)σ(j) /∈ E, i < j′ < j is a violation with smaller difference
j′ − i < j − i. If σ(j′)σ(h) /∈ E, i < j′ < h is a violation with smaller difference j′ − i < j − i. If both σ(j′)σ(j)
and σ(j′)σ(h) are edges, j′ < j < h is a violation with smaller difference j − j′ < j − i. Since all possibilities
lead to contradictions, we conclude that j = min{l : σ(l) ∈ X} and σ(h) is put into A(σ(j)) when v is being
processed. Thus the non-edge σ(j)σ(h) gets detected when u = σ(j) is processed (unless the algorithm quits
even sooner).

Remark. Note that the correctness of Algorithm LexBFS implies that not only one can leave any simplicial
vertex as the last one in a PES, but it is also true that any vertex of a chordal graph can be used as the first
vertex in a PES.

18



Chapter 6

Recognition of Comparability graphs

Recall that comparability graphs are exactly the transitively orientable graphs. And that a transitive orientation
is a binary relation on the vertex set of the graph which is transitive and orients every edge of the graph in exactly
one direction. In order to eventually construct such a relation, if it exists, we will examine partial orientations
and relations with further useful properties. Throughout this chapter we assume that we are processing a given
simple undirected graph G = (V,E).

Definition 12. A relation M ⊆ V × V is called

• sensitive if for every three vertices x, y, z ∈ V , it holds true that (x, y) ∈ M,xz ∈ E, yz /∈ E imply
(x, z) ∈ M , and (x, y) ∈ M , zy ∈ E, xz /∈ E imply (z, y) ∈ M ,

• complete if it is sensitive and transitive,

• faithful if for every two vertices x, y ∈ V , it holds true that (x, y) ∈ M implies xy ∈ E, and

• whole if for every edge xy ∈ E, at least one of (x, y), (y, x) is in M .

Observation. Every faithful, transitive and whole relation is necessarily sensitive.

Proof. Suppose x, y, z are such that (x, y) ∈ M , xz ∈ E and yz /∈ E. Since M is whole, we have either
(x, z) ∈ M or (z, x) ∈ M . In the case of (z, x) ∈ M , transitivity of M would imply (z, y) ∈ M , what would
be in contradiction with the assumed faithfulness of M . Hence it must be (x, z) ∈ M . The symmetric rule is
proven analogously.

Observation. Every transitive and faithful relation is necessarily antisymmetric (because we only consider
simple - and henceforth loopless - graphs). Therefore transitive
orientations of G are exactly those relations that are transitive, whole and faithful, and these are exactly those
relations that are complete, whole and faithful.

Observation. The intersection of sensitive (transitive, complete) relations is a sensitive (transitive, complete,
respectively) relation.

The last observation implies that closures are defined uniquely:

Definition 13. Let M ⊆ V × V be a binary relation. The smallest relation which contains M and which is
sensitive (transitive, complete) is called the sensitive- (transitive-, complete-, respectively) closure of M and is
denoted by 〈M〉S (〈M〉T , 〈M〉, respectively).

Lemma 3. For any binary relation M ⊆ V × V , it is 〈M〉 = 〈〈M〉S〉T .

Proof. It suffices to show that 〈〈M〉S〉T is sensitive. Suppose x, y, z ∈ V are such that (x, y) ∈ 〈〈M〉S〉T , xz ∈
E, yz /∈ E. Then there is a sequence x = x1, x2, . . . , xk = y such that xixi+1 ∈ 〈M〉S for every i = 1, 2, . . . , k−1.
Since x1z ∈ E and xkz /∈ E, there is an index i, 1 ≤ i < k such that xiz ∈ E and xi+1z /∈ E. Then
(xi, z) ∈ 〈M〉S (this follows from its sensitivity), and hence (x, z) ∈ 〈〈M〉S〉T follows from the sequence of arcs
(x1, x2), (x2, x3), . . . , (xi−1, xi), (xi, z) ∈ 〈M〉S .
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6.1 Blocks
Definition 14. A block is the sensitive closure 〈(x, y)〉S of a single arc (x, y) such that xy ∈ E. A pathway of
length k − 1 in V × V from (a, b) to (c, d) is a sequence (xi, yi), i = 1, 2, . . . , k such that

• (a, b) = (x1, y1), (c, d) = (xk, yk),

• for every i = 1, 2, . . . , k, xiyi ∈ E,

• for every i = 1, 2, . . . , k − 1, either xi = xi+1 and yiyi+1 /∈ E, or yi = yi+1 and xixi+1 /∈ E.

The distance of (a, b) and (c, d) (denoted by distΓ((a, b), (c, d))) is the length of a shortest pathway between
(a, b) and (c, d).

Proposition 21. Let xy ∈ E be an edge of G. Then the block 〈(x, y)〉S determined by an orientation (x, y) of xy
contains exactly those arcs (u, v) that are connected by pathways from (x, y) to (u, v). For every (u, v) ∈ 〈(x, y)〉S,
this arc defines the same block, i.e., 〈(x, y)〉S = 〈(u, v)〉S.

Proof. Define the graph ΓG = ((V × V ) ∩ {(x, y) : xy ∈ E}, {(x, y)(u, v) : (x = u, yv /∈ E) ∧ (y = v, xu /∈ E)})
that captures the sensitive-rule constellations. Then blocks are connected components of ΓG. The concatenation
of pathways from (x, y) to (u, v) and from (u, v) to (s, t) is a pathway from (x, y) to (s, t). Hence 〈(u, v)〉S ⊆
〈(x, y)〉S for every (u, v) ∈ 〈(x, y)〉S . Since a pathway from (x, y) to (u, v) traversed in the opposite way is a
pathway from (u, v) to (x, y), we get 〈(x, y)〉S = 〈(u, v)〉S .

Corollary. For an edge xy ∈ E, it is 〈(y, x)〉S = 〈(x, y)〉−1
S and both 〈(x, y)〉S and 〈(y, x)〉S are faithful.

Lemma 4. Let xy ∈ E be an edge of G. If the block 〈(x, y)〉S is antisymmetric, then it is also transitive, and
hence 〈(x, y)〉 = 〈(x, y)〉S is faithful and complete.

Proof. For the sake of brevity, denote U = 〈(x, y)〉S . Suppose U is not transitive, i.e., there exist vertices
a, b, c ∈ V such that (a, b), (b, c) ∈ U and (a, c) /∈ U . Since U is faithful, ab, bc ∈ E. It follows from the
Proposition above that 〈(a, b)〉S = U , and hence there is a pathway from (a, b) to (b, c) in G. Let the choice of
the transitivity violating triple a, b, c be such that the distance of (a, b) and (b, c) is the smallest possible.

If ac were not an edge of G, sensitivity of U would imply (c, b) ∈ U and that would be a contradiction with
the assumed antisymmetry of U . Thus ac ∈ E.

Let (a, b) = (x1, y1), (x2, y2), . . . , (xk, yk) = (b, c) be a shortest pathway from (a, b) to (b, c) in G and let l
be the largest index such that yl 6= c. Note that xl = xl+1 and yi = c for all i = l + 1, . . . , k. Set α = xl and
β = yl.

Claim 22. For every i = l + 1, . . . , k, axi ∈ E.

Proof of claim. If for any such i were axi /∈ E, the sensitivity rule applied to a, xi, yi = c would imply ac ∈ U
and a, b, c would not violate transitivity.

Claim 23. For every i = l + 1, . . . , k, (a, xi) ∈ U .

Proof of claim. We know that (a, xk = b) ∈ U and applying the sensitivity rule backwards on triples xi, c, xi−1

for i = k, k − 1, . . . , l + 1, the claim is proven.

Claim 24. It is (a, β = ye) /∈ U .

Proof of claim. If (a, β) were in U , the sensitivity rule applied to β, a, c would imply (a, c) ∈ U , what is assumed
not be the case.

Now a, α = xl, β = yl is another transitivity violating example (as we have proved that (a, α) ∈ U, (a, β) /∈ U ,
and (α, β) ∈ U since it is included in the pathway). The sequence (a, α), (a, xl+2), . . . ,
(a, xk = b), (x2, y2), . . . , (xl = α, yl = β) is a pathway from (a, α) to (α, β) of length k − l − 1 + l − 1 = k − 2 <
distΓ((a, b), (b, c)), contradicting the choice of a, b, c.
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6.2 Structure of transitive orientations
If G allows a transitive orientation T , each edge xy ∈ E must be oriented one way or the other, and hence
〈(x, y)〉S ⊆ T or 〈(y, x)〉S ⊆ T . Thus 〈(x, y)〉S must be antisymmetric for every edge xy ∈ E. The goal of this
section is to show that this obvious necessary condition is also sufficient.

Theorem 25. A graph G is transitively orientable if and only if the block 〈(x, y)〉S is antisymmetric for every
xy ∈ E.

The proof of the Theorem will follow from the following Lemma 5, which will also serve as a tool for finding
a transitive orientation, if one exists.

Lemma 5. Let M ⊆ V × V be a faithful complete binary relation and let xy ∈ E be an edge such that 〈(x, y)〉S
is antisymmetric and M ∩ {(x, y), (y, x)} = ∅. Then 〈M ∪ {(x, y)}〉 is faithful.

Proof. Denote by U = 〈(x, y)〉S . Then U = 〈(x, y)〉 follows from Lemma 4. Since M ∩ {(x, y), (y, x)} = ∅, it
follows from the structure of blocks that M ∩ (U ∪ U−1) = ∅, and hence 〈M ∪ {(x, y)}〉S = M ∪ U . Lemma 3
then implies that 〈M ∪ {(x, y)}〉 = 〈〈M ∪ {(x, y)}〉S〉T = 〈M ∪ U〉T .

Suppose for the contrary that 〈M∪U〉T is not faithful. Then there exists a sequence of edges x1x2, x2x3, . . . ,
xk−1xk such that (xi, xi+1) ∈ M ∪ U for all i = 1, 2, . . . , k − 1 and x1xk /∈ E. Since x2x1 ∈ E and xkx1 /∈ E,
there is a j, 2 ≤ j < k such that xjx1 ∈ E and xj+1x1 /∈ E. Sensitivity of M ∪U then implies that xjx1 ∈ M ∪U
and M ∪ U contains a directed cycle.

Let C be a shortest cycle in M ∪ U . Since both M and U are transitive, the arcs of C alternatively come
from M and U . The length of C is at least 4, because a cycle of length 2 would contradict the assumption
that M ∩ U−1 = ∅. No diagonal of C belongs to M ∪ U , since any such diagonal would create a shorter cycle.
Finally, all diagonals of C are edges of G, since otherwise the sensitivity of M ∪U would imply that either some
diagonal belongs to M ∪ U , or some arc of the cycle belongs to M ∩ U−1.

Let now a, b, c, d be consecutive vertices of C such that (a, b), (c, d) ∈ U and (b, c) ∈ M . Let the choice of C
and of a, b, c, d be such that distΓ((a, b), (c, d)) is minimum possible among all such choices. Note again that we
have already observed that ac, bd, ad ∈ E, {(a, c), (c, a), (b, d), (d, b), (a, d)} ∩ (M ∪ U) = ∅ and (d, a) /∈ U .

Consider a shortest pathway (a, b) = (x1, y1), (x2, y2), . . . , (xk, yk) = (c, d). Let l be the smallest index such
that yl 6= b (i.e., y1 = y2 = · · · = yl−1 = b, xl−1 = xlandx1, x2, . . . , xl−1 are pair-wise different). Set α = xl and
β = yl . We proceed with a sequence of observations.

Claim 26. For every i = 1, 2, . . . , l, xid ∈ E.

Proof of claim. If xid were a non-edge for some i, sensitivity would imply (d, b) ∈ U .

Claim 27. For every i = 1, 2, . . . , l, xic ∈ E.

Proof of claim. If xjc were a non-edge for some j, sensitivity of U would imply (xj , d) ∈ U , and hence (xi, d) ∈ U
for all i = 1, 2, . . . , l. Thus (a, d) ∈ U , contradicting the assumption.

Claim 28. It is cβ ∈ E.

Proof of claim. Otherwise sensitivity applied to c, α = xl, β = yl would imply (α, c) ∈ U , and hence (xi, c) ∈ U
for all i = 1, 2, . . . , l, and thus (a, c) ∈ U .

Claim 29. Now (β, c) ∈ M follows from sensitivity of M applied to b, c, β.

Claim 30. For every i = 1, 2, . . . , l, xiβ ∈ E.

Proof of claim. If xjβ were a non-edge for some j, sensitivity of M would imply (xj , c) ∈ M , hence we would
get (xi, c) ∈ M for all i = 1, 2, . . . , l, and also (a, c) ∈ M .

Claim 31. Sensitivity of U implies that (xi, β) ∈ U for all i = 1, 2, . . . , l, and hence also (a, β) ∈ U .

Now we see that a, β, c, d, . . . is a directed cycle in M∪U of the same length as C, while distΓ((a, β), (c, d)) ≤
l − 2 + k − l = k − 2 < k − 1 = distΓ((a, b), (c, d)) since (x1, β), (x2, β), . . . , (xl−1, β), (xl+1, yl+1), . . . , (xk, yk) is
a pathway from (a, β) to (c, d). This is the desired contradiction.

Proof of Theorem 25. We have already seen that if G is transitively orientable, each block must be asymmetric.
For the opposite implication, suppose that G is such that each block 〈(x, y)〉S , xy ∈ E, is asymmetric and

suppose that M ⊆ V × V is a largest possible complete and faithful binary relation on V . If M is not whole,
there is an edge xy ∈ E which is not oriented by M , i.e., M ∩ {(x, y), (y, x)} = ∅. Lemma 5 implies that
〈M ∪ {(x, y)}〉 is a faithful complete relation, and it is clearly a strict superset of M . That would contradict
the choice of M . Hence M is whole, and thus a transitive orientation of G.
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6.3 Algorithmic aspects
Lemmas 2 and 3 also provide the correctness argument for a polynomial time algorithm for deciding if a graph
is transitively orientable, and constructing such an orientation, if one exists.

Algorithm 4 Transitive Orientation
Require: A graph G = (V,E).

1: M := ∅
2: while M is not whole do
3: let xy ∈ E be such that M ∩ {(x, y), (y, x)} = ∅
4: construct U = 〈(x, y)〉S
5: if U is not antisymmetric then
6: return ”G is not transitively orientable”
7: else
8: M := 〈M ∪ U〉T
9: end if

10: end while
11: return ”G is transitively orientable by M”
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Chapter 7

Visibility and contact representations
of planar graphs

7.1 s− t numbering
Definition 15. An s − t numbering (also called a bipolar orientation) of a graph is an acyclic orientation of
its edges which has exactly one source (a vertex with no in-coming arcs) and exactly one sink (a vertex with no
out-going arcs).

Proposition 32. Every vertex 2-connected graph has an s− t numbering.

Proof. By induction on adding ears, using the Ear Decomposition Lemma. Given the starting cycle, choose two
distinct vertices on it (to be the source and the sink) and orient the cycle as two directed paths from the source
to the sink. The loop invariant will be that every vertex lies on a directed path from the source to the sink.
When adding an ear, orient it in the direction from the source to the sink if both end-vertices of the ear lie on
the same path from the source to the sink. If the end-vertices of the ear lie on different paths from the source
to the sink, the ear may be oriented either way (but all of its edges in the same direction).

Theorem 33. Every vertex 2-connected plane graph has an s− t numbering and a noncrossing planar drawing
such that

i) every edge is drawn as a y-monotone curve (i.e., every horizontal line crosses the drawing of the edge in at
most one point), and

ii) the drawing of every edge is oriented upward in the s− t numbering.

This s− t numbering and a corresponding planar drawing can be constructed in polynomial time.

Comment. By saying a plane graph it is meant a planar graph with a given noncrossing drawing in the plane,
and it is understood that only drawings which are homeomorphic to the given one are considered, including the
choice of the outerface.

Proof. By Ear Decomposition Lemma, the given graph G can be constructed from the cycle bounding its
outerface by adding ears. Choose two distinct vertices, say a and b, on this cycle, place them in the plane so
that they have different y-coordinates, the coordinate of a being smaller than the coordinate of b, orient the
two a− b paths forming the cycle from a to b and draw them as y-monotone paths from (the drawing of) a to
(the drawing of) b.

Then continue adding the ears, orienting their edges and adding them to the drawing constructed while
keeping the following loop invariant – the drawing is homeomorphic to the so far constructed part of G, it
satisfies i) and ii), all vertices have distinct y-coordinates, and each face is bounded by two upward oriented
paths connecting its vertices with the lowest and the highest y-coordinates (we will refer to these paths as
the left one and the right one). Note that i) and ii) together imply that the drawing of any directed path is
y-monotone.

When an ear is added, it is added inside a face of the so far constructed part of G. Direct the edges of
the ear in the direction from the vertex with the lower y-coordinate to the vertex with the higher one (the
end-vertices of the ear belong to the so far constructed part of G and so they have already been drawn). If the
end-vertices belong to the same bounding path (the left one or the right one) of the face they should be draw
in, draw the ear as a y-monotone curve contouring the bounding path. If the end-vertices belong to different
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bounding paths, draw the ear as a y-monotone curve that contours the path which contains the lower endpoint
and traverse the face to the other endpoint almost horizontally close to the y-coordinate of this other endpoint,
in order to avoid crossings with other edges. It is easy to check that the loop invariant of the construction is
fulfilled.

Figure 7.1: An illustration to adding an ear in the construction of an s − t numbering and a corresponding
upward drawing.

7.2 Rectangle visibility representations
Definition 16. A rectangle visibility representation of a plane graph G is an arrangement of disjoint
axes-aligned rectangles in the plane such that the (unions of) horizontal sides of the rectangles correspond to the
vertices of G, the (unions of) vertical sides to the faces of G, and each rectangle corresponds to the edge joining
the vertices containing the upper and lower sides of the rectangle, and at the same time to the dual edge joining
the faces corresponding to the left and right sides of the rectangle.

Comment. In this section we allow multiple edges without explicitly talking about
multigraphs. Moreover, we artificially choose two vertices on the boundary of the outerface and divide the
outerface into two faces by ”infinite” dummy edges starting in these points.

Theorem 34. Every planar vertex 2-connected graph has a rectangle visibility
representation.

Proof. We in fact describe an algorithm how such a representation can be constructed. The bonus is that the
construction runs in polynomial time.

It is, however, necessary to prove that this Algorithm really outputs a rectangle visibility representation of
G. This is done via a series of claims. The first ones talk about the upward drawing of G constructed in Step
1 and the dual graph G∗ and its drawing inherited from the drawing of G.

Claim 35. Vertex number 1 and vertex number n are both on the boundary of the outerface of G (and also of
G′). The face that gets the name A is the unbounded face and the face with the highest name, say Z, is the
other face incident with the dummy edge 1n.

Claim 36. The orientation of G∗ described in Step 4 is acyclic and A is its only source and Z is its only
sink. Hence it is indeed an s − t numbering of G∗. To see this, note first that the edge AZ which crosses
the dummy edge 1n cannot be involved in any directed cycle, as A is a source and Z is a sink in G∗. Next
observe that a clock-wise oriented cycle in G∗ would bound a region with at least one vertex of G inside and
all edges of G crossing this cycle would be oriented from inside towards the outside of this region, hence, there
would necessarily be a source of G in this region, and this would be different from the vertex 1. Similarly, a
counter-clock-wise oriented cycle in G∗ would bound a region that would contain a sink different from n. This
would be a contradiction with the assumption that we were working with an s − t-numbering of G. Finally, a
source different from A (a sink different from Z) in G∗ would yield a directed cycle on the boundary of this face
of G. A contradiction again.
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Figure 7.2: An example of a rectangle visibility representation of a planar graph. The highlighted rectangle in
the representation corresponds to the primal edge 13 and dual edge cd.

Algorithm 5 RectangleVisibilityRep
Require: A planar graph G.

1: Construct an s− t numbering and a corresponding upward planar drawing as in Theorem 33.
2: Number the vertices as 1, . . . , n according to their y-coordinates (1 is the lowest vertex, n is the highest

one).
3: Add a dummy arc from 1 to n drawn to the right of the drawing of G, denote by G′ the resulting graph.
4: Construct the dual graph G∗ to G′, and orient its edges so that each edge of G is crossed by its dual edge

from left to right, while the added dummy edge is crossed from right to left. Let n∗ be the number of
vertices of G∗.

5: Consider a topological sorting of the vertices of G∗ and name them A,B, . . . according to this sorting.
6: Take a grid of size n×n∗. For a vertex i of G, let α(β) be the face incident with i with the lowest (highest,

respectively) name in the topological sorting of G∗. Represent i by a horizontal segment on the i-th line,
starting at the vertical line α and ending on the vertical line β. For a face α of the drawing of G′ (i.e.,
a vertex of the dual graph G∗), let i be its lowest vertex and j its highest vertex (with respect to the
topological sorting of G). Represent α by a segment on the vertical line α, starting on the i-th horizontal
line and ending on the j-th one.

7: return this representation.

Claim 37. The boundary of every face α of G consists of two directed paths, the left one and the right one,
both connecting the vertex of the lowest number to the vertex of the highest number among the vertices of this
face. We have seen this in the proof of Theorem 33.

Claim 38. For every vertex i of G, i 6= 1, n, the faces incident with i induce two directed paths in G∗, both
connecting the face to the left of i to the face lying to the right of i, one of the paths passing through the faces
for which i is their topmost vertex, the other one passing through the faces for which i is their lowest vertex.
See Fig. 7.3 right.

In the next claims we prove that the collection of segments constructed in Step 6 defines a rectangle visibility
representation of G.

Claim 39. Let i be a vertex of G, i 6= 1, n. Let α and ω be the faces to the left and to the right of i, respectively.
Then the (horizontal) segment i touches the vertical segment for α from the right, it touches the vertical segment
for β from the left, it is touched by the segments representing the faces lying on the upper path from α to β
in G∗ from above, and it is touched by the faces lying on the lower path from α to β in G∗ from below. The

25



(a) Orientation of the dual edges.

iα ω

(b) An example to the statement of Claim 38.

Figure 7.3: Examples for claims.

segment representing vertex 1 spans the whole range from A to Z and is only touched by vertical segments from
above, while the segment representing n is only touched by vertical segments from below, and also spans the
whole range from A to Z.

Claim 40. Let α be an inner face of G, i.e., a face not incident with the dummy edge 1n. The vertical segment
representing α touches the horizontal segment representing its lowest vertex from above, it touches the segment
representing its topmost vertex from below, it is touched by the segments representing the vertices on the left
boundary path of α from the left and it is touched by the segments representing the vertices on the right boundary
path of α from the right. The segment representing A is touched only from right, while the segment representing
Z is touched only from left, always by the appropriate horizontal segments.

iα ω

α ω

α α

Figure 7.4: Illustration to Claims 39 and 40.

Claim 41. For every edge ij of G, let αβ be its dual edge. Then the segments representing i, j, α and β bound
a rectangle in the representation.

Claim 42. No two segments constructed in Step 6 cross each other. For suppose segment j crosses segment α.
By the way the segments are constructed, this means that there exist vertices i, k, i < j < k, and β, γ, β < α < γ,
such that i is the lowest and k the topmost vertex of face α and β is the left and γ the right face incident with
j. Consider the upward drawing of G and the horizontal stripe of vertices with their y-coordinates between i
and k. The face α spans this stripe from its bottom to its top lines, and thus it lies either to the left or to the
right of vertex i. Suppose it is to the left. The horizontal ray starting in vertex i and pointing to the left passes
first through the face β and then crosses several faces until it finally crosses α. Since all edges of G it crosses
on this way are directed upward, these faces form a path directed from α to β in G∗, which means that α < β
in the topological sorting of G∗. Which is a contradiction.

Claim 43. The rectangles from Claim 41 are disjoint and fill in the base rectangle formed by segments A,Z, 1, n.
This now follows from the previous claims. And this means that we have indeed constructed a rectangle visibility
representation of G.

7.3 Grid Contact graphs
Definition 17. A graph is a Grid Intersection graph if it has an intersection
representation by vertical and horizontal segments in which no two segments of the same direction share a
point (in other words, all vertical, as well as all horizontal, segments are pairwise disjoint). A graph is a
Grid Contact graph if it has a Grid Intersection representation in which no two segments cross, i.e., any two
non-disjoint segments only touch each other.
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Figure 7.6: An overview of the construction by Algorithm RectangleVisibilityRep.

Proposition 44. Every grid intersection graph is bipartite. Moreover, every grid contact graph is planar.

Proof. The first claim is a simple observation. For the second claim, note that grid contact graphs form a
subclass of triangle-free contact graphs of arc-connected regions in the plane. All such graphs are planar, since
a non-crossing drawing can be constructed from a contact representation by selecting a point inside each region
to represent its vertex, and connecting it to the contact points with the adjacent regions by curves inside the
region.

Theorem 45. Every planar bipartite graph is a grid contact graph.

Proof. Given a planar bipartite graph G = (A ∪ B,E), consider a non-crossing drawing and extend it to a
non-crossing drawing of a supergraph G′ = (A′ ∪B′, E′) such that

• G is an induced subgraph of G′,

• every face of the drawing of G′ is bounded by a cycle of length 4 (i.e., G′ is a so called quadrangulation),

• every vertex of G′ has degree greater than 2, and

• no vertex of B is on the boundary of the outerface of G′.

Then construct the graph Ḡ = (A′, Ē) by putting Ē the diagonals of the faces of G′ connecting their A′-
vertices. It can be easily seen that G is vertex 2-connected and that the faces of Ḡ are in 1-1 correspondence
with the vertices of B′. Thus the segments of a rectangle visibility representation of Ḡ constructed as in the
proof of Theorem 34 form a grid contact representation of G′ . Note the technical detail that the vertex (of B′)
that corresponds to the outerface of Ḡ is represented by two vertical segments, not one. But this vertex does
not belong to B, and so the segments corresponding to the vertices of G form a grid contact representation of
G.
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(a) The graph G′. (b) The graph G.

Figure 7.7: An illustration to the proof of Theorem 45.
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Chapter 8

Schnyder woods

8.1 Canonical ordering
Definition 18. Given a plane triangulation (i.e., a non-crossing embedding of a triangulation in the plane,
which means that the outerface is fixed) G = (V,E), a canonical ordering of it is a numbering 1, 2, . . . , n of its
vertices such that

i) the vertices of the outerface are 1, 2 and n = |V |,

ii) for every i = 3, 4, . . . , n− 1,

a) the graph Gi = G[1, 2, . . . , i] is vertex 2-connected,
b) all vertices j ≤ i are drawn inside (or on the boundary) of the embedding of Gi inherited from the

embedding of G,
c) all vertices j > i are drawn outside the embedding of Gi inherited from the embedding of G,
d) the neighbors of vertex i+ 1 in Gi are lying consecutively on the boundary of Gi.

Theorem 46. Every triangulation has a canonical ordering.

Proof. By induction from n downto 3, assign the numbers to the vertices. Once n, n− 1, . . . , i+1 are assigned,
choose as vertex i such a vertex on the boundary of Gi whose deletion from Gi leaves Gi−1 vertex 2-connected.
The only obstacle to preserving 2-connectedness is if i would be incident to a diagonal edge (an edge with both
end-vertices on the boundary of the outerface, but which itself is not a part of the boundary). But there is
always a vertex which is not incident with any diagonal (to observe this, consider a vertex which is incident
with a shortest possible diagonal, with the length of a diagonal being measured by the number of vertices of
the boundary that it cuts off of Gi). So assign i to a vertex (there may be more options) which is not incident
to any diagonal. Then a), b) and c) are fulfilled for Gi−1. Note that d) follows from b) and c).

8.2 Schnyder woods

Algorithm 6 Schnyder
Require: A plane triangulation G = (V,E) and a canonical ordering of it.

1: for i := 3 . . . n− 1 do
2: set b(i) to be the leftmost neighbor of i on the boundary of Gi−1, direct the edge ib(i) in this direction

and color it blue;
3: set g(i) to be the rightmost neighbor of i on the boundary of Gi−1, direct the edge ig(i) in this direction

and color it green;
4: set r(i) to be the neighbor of i with the highest number, direct the edge ig(i) in this direction and color

it red
5: end for
6: return the orientation of G, the coloring of its edges and the mappings b, g and r.

Theorem 47. The blue edges form a tree rooted in vertex 1 and spanning the vertices 1, 3, . . . , n− 1, the green
edges form a tree rooted in vertex 2 and spanning the vertices 2, 3, . . . , n−1, and the red edges form a tree rooted
in vertex n and spanning the vertices 3, . . . , n. Every edge of G, except of 12, 1n, 2n, belongs to exactly one of
these trees.
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Figure 8.1: An illustration to canonical orderings and Schnyder woods.

Proof. Clear from the construction and properties of canonical orderings.

Corollary. The edges of a planar triangulation can be partitioned into edge sets of 3 trees and a triangle. Such
a collection of three trees is called a Schnyder wood of G.

1 2

n

i

Gi−1

Figure 8.2: The rotation scheme of incoming and outgoing edges around a vertex in the Schnyder wood.

Proposition 48. Locally around every inner vertex of G, we see (in the counter-clock-wise order) one outgoing
blue edge, several (or none) incoming red edges, one outgoing green edge, several (or none) incoming blue edges,
one outgoing red edge, and several (or none) incoming green edges.

8.3 Triangle contact representations
Theorem 49 (de Fraysseix, Ossona de Mendez, Rosenstiehl). Every planar graph is a contact graph of isosceles
triangles with horizontal bases.

Proof. It suffices to prove the theorem for triangulations, since every planar graph is an induced subgraph of
a triangulation. Given a triangulation G = (V,E), fix an embedding and consider a canonical ordering with
respect to this embedding, and run algorithm Schnyder on this canonical ordering. Draw n+1 = |V |+1 parallel
horizontal lines and build triangles as follows:
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T5

T6

T7

Figure 8.3: An illustration to contact representations by isosceles triangles.

1. Triangle Ti is isosceles and its base lies on the i-th line,

2. The peaks of T1 and T2 are on the (n+ 1)-st line, the left corner of T2 touches the right side of T1,

3. For every i = 1, 2, . . . , n, the left corner of Ti lies on the right side of Tb(i), the right corner of Ti lies on
the left side of Tg(i) and the peak of Ti lies on the r(i)-th line (on the (n+ 1)-st line for i = n).

Construct the triangles from T1 to Tn. For T1, only the lines supporting its base and peak are prescribed, the
triangle is free otherwise. For T2, the freedom is restricted only to the position of the right corner (which then
determines the position of the peak). For i > 2, the triangles are then determined uniquely. The loop invariant
of this inductive construction is that for i > 1, the upper boundary of the union of triangles T1, T2, . . . , Ti

is connected and the order in which the triangles appear on this boundary is the same as the order of the
corresponding vertices appearing on the upper boundary of Gi. This implies that Ti is always placed in the way
that it is touching the respective neighbors, but not crossing any triangle of the representation.

8.4 Drawing planar graphs on small grids
Theorem 50. Every planar n-vertex graph allows a straight-line non-crossing embedding on a grid of size n×n.

Proof. It suffices to prove the theorem for planar triangulations. Given a triangulation G = (V,E), fix an
embedding and consider a canonical ordering with respect to this embedding, and run algorithm Schnyder on
this canonical ordering. Assign barycentric coordinates (xi, yi, zi) to every vertex i = 3, 4, . . . , n − 1 as follows
(see Fig. 8.4 for illustration): The triangle 12n is divided into three regions by the blue, green and red directed
paths from i to the roots of the trees in the Schnyder wood. Let xi be the number of vertices in the region
bounded by the blue and green paths and the side 12, with the vertices on the green path being counted in,
but not the vertices of the blue path. Similarly, yi is the number of vertices in the region bounded by the blue
and red paths and the side 1n, with the vertices on the blue path being counted in, but not the vertices of the
red path, and zi is the number of vertices in the region bounded by the red and green paths and the side n2,
with the vertices on the red path being counted in, but not the vertices of the green one. Vertex i itself is not
counted in neither of the regions.

Then every vertex except of i belongs to exactly one of the regions, end hence

xi + yi + zi = n− 1

for every i. For i = 1, 2, and n, we set

x1 = 0, y1 = 0, z1 = n− 1
x2 = 0, y2 = n− 1, z2 = 0
xn = n− 1, yn = 0, zn = 0

31
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7

Figure 8.4: An illustration to the definition of barycentric coordinates from Schnyder woods. The green vertices
are counted for the definition of x6, the blue one for the definition of y6 and the red one for the definition of z6.
Vertex 6 itself does not contribute to any of the coordinates.

Place vertex i in the point with barycentric coordinates (xi, yi, zi) in a triangular n× n× n grid (the lines
of the grid have coordinates 0, 1, . . . , n − 1). Draw the edges of G as straight-line segments connecting their
vertices.

Claim 51. Consider a vertex i ∈ {3, 4, . . . , n − 1}. In the drawing constructed as above, the blue edge ib(i) is
directed into the bottom-left sextant of i, the edge ig(i) is directed into the bottom-right sextant of i, and the
edge ir(i) is directed into the top sextant of i.

Proof of claim. From the definition of the coordinates, it follows that xb(i) ≤ xi, yb(i) < yi and zb(i) ≥ zi, and
this implies the direction of the edge ib(i). Similarly for the others.

Claim 52. The rotation scheme of the edges around each vertex i in the barycentric drawing is the same as the
rotation scheme of the edges incident to the same vertex in G.

Proof of claim. This follows by application of Claim 51 to the other end-vertices of the edges directed into i.

Claim 53. The barycentric drawing is non-crossing and topologically equivalent to the plane embedding of G
we started with.

Proof of claim. If the rotation schemes for all vertices of drawings of two 3-connected graphs are the same and
one of the drawings is non-crossing, then so is the other one, and the drawings are topologically equivalent.

8.5 Boxicity of graphs
Definition 19. The boxicity of a graph G, denoted by box(G), is the smallest integer d such that G is an
intersection graph of boxes in Rd (i.e., of d-dimensional intervals in the d-dimensional Euclidean space).

Proposition 54. For every graph G = (V,E), its boxicity is a correctly defined finite number. It equals the
minimum number of interval graphs whose intersection is equal to G, i.e., the minimum number d for which sets
Ei ⊆

(
V
2

)
, i = 1, 2, . . . , d exist, such that E = ∪d

i=1Ei and (V,Ei) is an interval graph for every i = 1, 2, . . . , d.

Proof. An exercise. Proof the claim for graphs G which are not complete. For a complete graph, the boxicity
is 0, which corresponds to the fact that the intersection of an empty set of subsets of a ground set (E, in this
case) is by default set to be equal to the ground set itself.
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8.6 Grid intersection graphs
Definition 20. A graph is a Grid Intersection graph if it has an intersection representation by vertical and
horizontal segments in which no two segments of the same direction share a point (in other words, all vertical,
as well as all horizontal, segments are pairwise disjoint).

It is easy to observe that every grid intersection graph has a grid intersection representation in which no
two segments lie on the same line. Moreover, the exact x-coordinates of the vertical segments, nor the exact
y-coordinates of the horizontal ones, are important, only their linear orders. Thus we assume that our bipartite
graph G = (A∪B,E) has its vertices linearly ordered within the classes of bipartition, A = {a1, a2, . . . , an}, B =
{b1, b2 . . . , bm}. We further assume that the vertices of A are to be represented by vertical segments and the
vertices of B by horizontal ones. We say that a grid intersection representation respects the orders of A and
B if for every i < j, the x-coordinate of ai is smaller than the x-coordinate of aj , and the y-coordinate of bi is
smaller than the y-coordinate of bj .

Theorem 55. The graph G = (A ∪B,E) has a grid intersection representation that respects the linear orders
of A and B if and only if there are no 6 indices i < j < k, α < β < γ such that aibβ , akbβ , ajbα, ajbγ are edges
of G and ajbβ is not. Such a configuration of 6 vertices is called a volswagen in G.

Proof. Exercise.

It is easy (i.e., decidable in polynomial time) to check if a bipartite graph contains a volkswagen with respect
to given linear orderings of the vertices in its classes of bipartition. We will see in the last class that it is NP-
complete to decide if a given bipartite graph is a grid intersection graph, which means that it is NP-complete to
decide if a given bipartite graph allows linear orderings of its classes of bipartition with respect to which there
is no volkswagen. The following problem is thus quite interesting in this context.

Open problem: Given a bipartite graph with one class of bipartition linearly ordered. How difficult is to
decide if the other class of bipartition can be linearly ordered so that there is no volkswagen with respect to
these orderings?

Theorem 56 (Bellantoni, Hartman, Przytycka, Whitesides). Every bipartite graph of boxicity 2 is a grid
intersection graph.

C

BR(C)

Figure 8.5: An illustration to the definition of region BR(C).

Sketch of proof. Suppose G = (A∪B,E) is a bipartite graph and let R = {R(u) : u ∈ A∪B} be an intersection
representation of G by axes-parallel rectangles in the plane. For a rectangle C in the plane, we define regions
BL(C), BR(C), TL(C), TR(C) as follows: BR(C) contains all points with x-coordinate greater than the x-
coordinate of the left side of C, with y-coordinate smaller than the y-coordinate of the top side of C, but which
do not lie inside the rectangle C. The other regions (BL standing for Bottom-Left, TL standing for Top-Left,
and TR standing for Top-Right) are defined in a similar way. Then define two binary relations, one on A, the
other one on B, as follows

a1 <R a2 ⇔ R(a1) ∩BR(R(a2)) 6= ∅ for a1, a2 ∈ A,
b1 <R b2 ⇔ R(b1) ∩BL(R(b2)) 6= ∅ for b1, b2 ∈ B.

Claim 57. Both relations <R and <L are antireflexive, antisymmetric and acyclic. It follows that the transitive
closures <T

R and <T
L of <R and <L, respectively, are partial orders.

Let <∗
R and <∗

L be topological sortings of <T
R and <T

L, respectively.
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Claim 58. With respect to the linear orderings <∗
R and <∗

L of its classes of bipartition, G has no volkswagens.
Hence G has a grid intersection representation respecting these orders by Theorem 55.
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Chapter 9

String graphs

Definition 21. String graphs are intersection graphs on arbitrary lines in plane.

Definition 22. OuterString class is a class of graphs which are represented by intersection graphs of lines
starting from a circle boundary and growing arbitrarily inside the circle. Then constrained outer strings
is class containing graphs that are outer strings but also it is determined the order of lines appearance on the
circle.

[TODO] Create some pictures.

Theorem 59. For n ≥ 4 the complement of Cn, −Cn /∈ constrained-outerstring.

Proof. We proceed by induction on n. First we start by n = 4. Where if we draw the graph and because on
the circle the two opposite nodes have to connect somewhere, but not cross any other. That is impossible.

For greater n > 4 suppose for contrary that −Cn has a representation. Take such with smallest number of
crossing number. Then we create two more graphs −Ci+1 = −Cn[1, 2, . . . , i] and −Cn−1+1 = −Cn[i, i+1, . . . , n]
since n ≥ 5 both have size at least 4 but less than the −Cn but we know that one of them don’t have a
representation.

Theorem 60. Recognition of STRING is NP-hard.

Proof. The proof is done by creating a transformation of Planar 3-SAT to RECOG
(STRING). We won’t go deeper into the proof, but shortly as usual you create some gadgets for variables and
for clauses. Then you need to bind them. After that you use the planarity of 3-SAT to create a graph that
is representable as a STRING graph only if the SAT is satisfied. That is it abuses the previously mentioned
theorem.

Also it can be done by straight lines. Therefore also recognition of GI is NP-complete.

Theorem 61. RECOG(SEG), RECOG(CONV) are in ∃R ⊆ PSPACE.

This can be proven by the following ∃R problem. We ar egiven n polynoms p1, . . . , pn for n variables
x1, . . . , xn. The question is then whether there exists such assignment to x1, . . . , xn ∈ R that all polynoms are
non-negative.

Proof. We will represent G for each u ∈ V (G) as Mu convex set. Then we set points ∀uv ∈ E(G) : Puv =
(xuv, yuv). After that we take a convex hull of all inner points. Therefore we denote M ′

u = conv(Puv|v ∈ NG(v)).
Now (M ′

u|u ∈ V (G)) is convex reprezentation of G.
If Mu ∩Mv 6= ∅ ⇒ Puv ∈ M ′

u ∩M ′
v 6= ∅ if uv /∈ E(G) there exists a line separating these two convex hulls.

This line can be prescribed as a polynom. Therefore these polynoms must be negative for all non-edges.
For the RECOG(SEG) we may use similiar trick.

Comment. If G ∈ STRING then mwe must find such lines instead of nodes, but if we pick points representing
edges then the graph is planar. So we must guess such planar graph H and then the paths. But this is not
enough for NP since the polynomial is dependent on the size of the unknown H.

Definition 23. STR(n) is min k such that ∀G ∈ STRING |V (G)| = n there exists STRING representation
with at most k crossing points.

Definition 24. AT -graf is (G = (V,E), R ⊂
(
E
2

)
) and it is (weakly) realisable if there exists drawing D of a

graph G in the plane s.t. ∀e, f ∈ E(G) : De ∩Df 6= ∅ ⇒ {e, f} ∈ R.
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Observation. R = ∅ then (G, ∅) is realisable iff G is planar.

Definition 25. AT(n) is min k s.t. ∀ realisable AT -graf with n = |E(G)| is realisable with at most k crossing
points.

Theorem 62. STR(n) ∼ AT(n).

Proof. ”⇒” Let G ∈ STRING and |V (G)| = n,G needs STR(n) crossing points. Lets take such representation
∀u, v ∈ V (G) where u 6= v and uv ∈ E(G) we select point Puv ∈ Su ∩ Sv and say that these are nodes of the
new graph G′. Su is a line representing U ∈ V (G).

[TODO] finish the proof

Theorem 63. AT(n) ≥ 2cn for constant c.

Proof. We will create a certain type of a graph depicted on the picture.

[TODO] Finsih the proof and create a picture.

Theorem 64. RECOG(STRING) ∈ NP.

This will be shown in the second part of this course.

Theorem 65. AT(n) ≤ n · 2n.

[TODO] Finish the proof and also state supporting lemma.
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Part II

Geometric Representations of Graphs
II
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Chapter 10

STRING ∈ NP

Now we will take a look at recognition of STRING graphs. Mainly that this problem is indeed in NP. We
have already shown in the first part that STRING-recognition is NP-hard. The main problem is that some
string graphs require representation with exponentially many crossings. Which is not possible to guess in an
NP algorithm.

Also we have shown (Schaeffer and Štěfanovič) result that any string graph has a representation with at
most exponentially many crossings.

Before we continue lets give us an example of a graph and its STRING representation which can be seen on
Fig. 10.1.

u v

w x

y

(a) Graph G.

y

w

u

x

v

(b) String representation.

Figure 10.1: Example of a STRING graph.

Firstly lets define another problem which can be converted from STRING-recognition.

10.1 Weak AT-realization
The INPUT is a graph G = (V,E) and R ⊆

(
E
2

)
. The GOAL is to find a drawing of G where only the pairs

of edges from R are allowed to cross.
Note that AT stands for abstract topological and weak means that the pairs do not hove to cross, only

they can.
For now the drawing is somewhat basic. That is no edges crosses through a vertex. Vertices are points and

edges are curves.

10.2 Reduction of STRING-recognition to Weak AT-realization
For a given graph G = (VG, EG) we define the following graph H = (VH , EH) and R. VH = VG ∪ EG and
EH = {{v, e}, v ∈ VG, e ∈ EG, v ∈ e}. Lets see an example on Fig. 10.2. We may see that the graph is obtained
by subdividing all edges.

Lastly we define R = {{{v, e}, {w, f}}, {v, w} ∈ EG}.

Claim 66. G is a STRING graph ⇔ (H,R) has Weak AT-realization.

38



u v

w x

y

e

f g

h

i j

(a) Original graph G.
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(b) Graph H.

Figure 10.2: Creating H from G.

Proof. ”⇒” Suppose G is a STRING graph. Pick endpoints as vertices and crossings as edge-vertices of
H. Choose these arbitrary (see Fig. 10.3a for an example). The edges will follow the lines in a STRING
representation.

”⇐” Suppose (H,R) has a Weak AT-realization. See that H is bipartite. Now represent it by going from
the vertex alongside every edge to the edge-vertices of H and almost return to the vertex. See Fig. 10.3b for
an example. It is easily observable that when lines cross then indeed they need be connected by an edge.

y

w

u

x

v

(a) ⇒ (Only some edges are present.)

v

(b) ⇐

Figure 10.3: Examples for the proof.

10.2.1 Test Weak AT-realization in NP
Firstly we will write down all our assumption about the drawing we will be using.

1. We are on the sphere.

2. Vertex v is drawn as an open disc Dv (also we will denote ∂Dv as the boundary of Dv and Dv as the
closure of Dv, i.e. Dv = Dv ∪ ∂Dv).

3. An edge e = {v, w} is represented by a curve γe connecting a point from ∂Dv to a point from ∂Dw

otherwise γe is disjoint from
⋃

x∈V Dx.

4. For e 6= f γe and γf have distinct endpoints.

We can easily see that these assumption are not restricting since it can be switch to ”normal” drawing we
are using by shrinking the discs to single points and switch back by expanding the single points.

Now we will proceed with the first part of the algorithm 7.
Before we continue with the full algorithm we will take a short topological detour to some definitions and

facts.
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Algorithm 7 NP algorithm for testing Weak AT-realization.
Require: G = (V,E), R ⊆

(
E
2

)
1: ∀v ∈ V : choose Dv (so that v 6= w have Dv ∩Dw = ∅).
2: For any edge e ∈ E incident to v ∈ V : choose an endpoint of γe on ∂Dv.
3: . . .

10.2.2 Topological detour
Definition 26. S := (sphere) \

⋃
v∈V Dv. Which is a compact surface with boundary.

Definition 27. S − curve is a curve in S with endpoints in the ∂S and no other point in ∂S.

Definition 28. Two S-curves γ, δ are isotopic (written as γ ∼ δ) if γ and δ have the same endpoints and γ
can be transformed into δ by a continuous deformations of S which fixes the boundary.

γ

δ

(a) Example of S-curves γ, δ that are isotopic.

γ

δ

δ′

(b) Counterexample of non-isotopic γ 6∼ δ and example
of isotopic γ ∼ δ′, since we are on the sphere.

Figure 10.4: Example of isotopic and non-isotopic S-curves.

Definition 29. For two S-curves γ1, γ2 the intersection number i(γ1, γ2) is

min
δ1∼γ1,δ2∼γ2

|δ1 ∩ δ2|.

Fact. Let γ1, . . . , γn be S-curves. Then there are S-curves δ1, . . . , δn s.t.

1. δi ∼ γi for i = 1, . . . , n,

2. |δi ∩ δj | = i(γi, γj) for i 6= j ∈ {1, . . . , n}.

With all these definitions we will choose the following triangulation T = (VT , ET ) of S:

1. ∀v ∈ V : ∂Dv has three vertices and three edges of T .

2. There are no other vertices of T , the remaining edges are chosen arbitrarily as S-curves, so that S is
partitioned into triangle faces.

3. Vertices of T do not coincide with endpoints of γe, e ∈ E from algorithm.

Definition 30. An S-curve γ is normal w.r.t. T if

1. The endpoints of γ are distinct from VT .

2. Any point where an edge of T meets γ is either an endpoint of γ or a proper crossing (no touching is
allowed).

3. γ does not have two consecutive crossings with any edge of T .

4. γ does not cross the same edge of T no more than (2|ET |+|E|)-times.

Claim 67. If G has a weak AT-realization, then it has a realization where each γe is normal w.r.t. T.
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(a) Second before. (b) Second after. (c) Third before. (d) Third after.

Figure 10.5: Examples for the proof.

Proof. Take AT with minimum number of crossings. 1. is satisfied by the definition. 2. otherwise minimality
is broken (see Fig. 10.5a and 10.5b), 3. again the minimality is broken (see Fig. 10.5c and 10.5d) and lastly 4.
follows from GRG1.

Definition 31. Let γ be an S-curve, normal w.r.t T for e ∈ ET : ce(γ) := |e ∩ γ|.

Sometimes when we will be talking about γe for some e ∈ E then for f ∈ ET we will denote cf (e) short for
cf (γe). Also in the context we will sometimes leave out γe and only have cf or cuv if f = {u, v}.

Claim 68. The numbers (cf (e))f∈ET
determine γe up to isotopy.

10.2.3 Word equations
Before we showcase the proof we will show us a quick introduction to word algebra and its equations. We will
be considering a finite alphabet A = {a, b, c, . . . } and variables V = {X,Y, . . . }. Each variable X ∈ V has
prescribed length l(X) ∈ N0 and represents a word over A of length l(X).
Example. A = {a, b},V = {X,Y }, l(X) = 2, l(Y ) = 3 and the equation is:

XXa = XY,

where the operation is concatenation. One simple solution is X := ba and Y := baa.
We may see that having one equation or a whole system of equation is the same. As we can see here:

L1 = R1

L2 = R2 ⇔ L1L2 · · · = R1R2 . . .
...

Also it may be that the size of a solution can be even exponential. But there is usually a repeating pattern.
We can examine the following example to see that it is indeed true.

X1 = a

X2 = X1X1

X3 = X2X2

...

Fact. There is an encoding (”LZ-encoding”) such that for any system of word equations we can in polynomial
time (in |A|+ |V|+ |equations|+

∑
X∈V log |l(X)|) determine if a solution exists and compute the LZ-encoding

of the lexicographically smallest solution.

Fact. From the LZ-encoding of a word X ∈ A∗ we can compute the number of occurrences of any symbol a ∈ A
in X.

LZ-encoding

Shortly we will talk about the exact LZ-encoding. Firstly for a word a1a2a3 . . . an ∈ A∗, the LZ-factorization
is an expresion of the form a1a2a3 . . . an = b1X1b2X2b3X3 . . . bnXn where Xi is the longest possible sub-word
that also occurs in b1X1b2X2b3X3 . . . bi.

Then for LZ-encoding we replace each Xi with a point to previous occurrence and the length of Xi.
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Example. Here is a simple example of converting a word to LZ-factorization and then to LZ-encoding.

1 2 3 4 5 6 7 8 9 10
a a b a b a a b b b

a X1 b X2 a X3 b X4

a (1, 1) b (2, 2) a (2, 2) b (3, 1)

Now we will return back to the claim.

Proof of claim 68. To clarify this we must showcase the following two points.

1. Verify that for every e ∈ E, the numbers (cf (e), f ∈ ET ) actually describe a curve γe normal to T , with
correct endpoints.

• Choose e ∈ E, check that for f ∈ ET belonging to ∂S we have

cf (e) =

{
1 if f contains an endpoint of ∂S
0 otherwise .

• For every face t = {x, y, z} of T we can see that the number of connections from xy to xz is equal
to cxy+cxz−cxz

2 , therefore we must check that the number is in N0 for every face t and every pair of
edges xy, xz and yz.

u v

w

Figure 10.6: Example of connecting the triangle face edges.

• Also we need to verify that this gives a correct curve γe, therefore no loops are present. For which
we will use word equations A = {a, b}. For every f = {u, v} ∈ ET we will introduce two variables
Xuv and Xvu for which l(Xuv) = l(Xvu) = cuv(e). For every face t = {u, v, w} and vertex u ∈ t we
will introduce variables Yut and Ytu, where l(Yut) = l(Ytu) =

cuv+cuw−cwv

2 . The equations will be as
follows. For every {u, v} = f ∈ ET , f ∈ ∂S:

Xuv = Xvu =

{
b if f contains an endpoint of ∂S
∅ otherwise

and for every face t = {u, v, w} and edge {u, v} we will have:

Xuv = YutYtv, Xvu = YvtYtu.

Observation. If γe is a single connected curve, the system has a unique solution (all b’s). Otherwise,
there is a solution containing a, we can find it efficiently.

2. Verify that for each e1, e2 ∈ E, e1 6= e2, {e1, e2} /∈ R have i(γe1 , γe1) = 0.

• Now we will denote cuv := cuv(e1)+ cuv(e2) and then we will check that correctness as we did before.
• Next we also introduce similiar word equations. For alphabet A = {a, b, c} and variables Xuv, Xvu,

Yut, Ytu as was defined earlier. Only the length is different, for example l(Xuv) = cuv(e1) + cvu(e2)
and similarly for l(Yut) = . . . .
For the first equations it will be more tricky since we can have both e1 and e2 intersecting f ∈
ET , f ⊆ ∂S. Otherwise it is straightforward how it is defined.
For the next equations it will remain the same, which is Xuv = YutYtv, Xvu = YvtYtu.

• Lastly we need to verify Xuv has cuv(e1) occurrences of b and also cuv(e2) occurrences of c.
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By all these steps we have finished the proof that Weak AT-realization is in NP, because we only need to
guess the numbers cuv(e) and add it to the NP algorithm 8, because with that we can in polynomial time check
it is correct.

Algorithm 8 NP algorithm for testing Weak AT-realization.
Require: G = (V,E), R ⊆

(
E
2

)
1: ∀v ∈ V : choose Dv (so that v 6= w have Dv ∩Dw = ∅).
2: For any edge e ∈ E incident to v ∈ V : choose an endpoint of γe on ∂Dv.
3: Create a triangulation T .
4: Guess all the numbers cf (e).
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Chapter 11

χ-boundedness

Notation. χ(G) = chromatic number G and ω(G) = is the maximal clique in G.

Observation. ∀G : χ(G) ≥ ω(G).

Definition 32. Graph class C is χ-bounded if ∃f : N → N s.t. ∀G ∈ C : χ(G) ≤ f(ω(G)).

Example. χ-omezené třídy: úplné grafy, rovinné grafy (funkce f je konstantní), perfektní grafy.

Observation. Intervalové, permutační, chordální, comparability, . . . jsou perfektní a tudíž i χ-omezené.

11.1 χ-boundedness of CIRC graphs
Observation. Circular-Arc grafy splňují: χ(G) ≤ 2ω(G).

Proof. Na kružnici máme intervaly. V jednom bodě kružnici rozstřihneme a obarvíme ω(G) barvami. Potom
už máme jen intervalový graf, který je perfektní.

Definition 33. Následující definice jsou si ekvivalentní:

• G ∈ CIR.

• G je průnikový graf sečen v kružnici.

• G je průnikový graf půlkružnic nad x-ovou osou.

• G se dá reprezentovat posloupností čísel, kde se každé číslo 1, . . . , n vyskytuje právě dvakrát a platí, že
vrcholy vi, vj spolu sousedí právě když ta posloupnost obsahuje podposloupnost i, j, i, j nebo j, i, j, i.

Theorem 69. CIR je χ-omezená.

Notation. Pro k ∈ N definujeme CIR(k) := {G ∈ CIR : ω(G) ≤ k}.

Observation. CIR(k) ⊆ CIR(k + 1) ⊆ · · · ⊆ CIR.

Chceme dokázat, že (∀k ∈ N) (∃f(k) ∈ N) : ∀G ∈ CIR(k) platí, že χ(G) ≤ f(k).

Definition 34. Mějme G ∈ CIR reprezentovaný jako průnikový graf půlkružnic. Pro p, q ∈ N0 (p, q)-
konfigurace je množina p+ q vrcholů x1, . . . , xp, y1, . . . , yq takové, že půlkružnice mají tuto vzájemnou polohu
zobrazenou na obrázku 11.1.

Notation. CIR(k, p, q) = {G ∈ CIR, ω(G) ≤ k,G má reprezentaci bez (p, q)-konfigurace}.

Observation. Pro p > k a libovolné q ∈ N0: CIR(k, p, q) = CIR(k).

Claim 70. ∀k ∈ N ∀p, q ∈ N0 ∃g(k, p, q) ∈ N t.ž. ∀G ∈ CIR(k, p, q) : χ(G) ≤ g(k, p, q).

Observation. Důkazem tohoto tvrzení platí věta.

Proof. Dané tvrzení dokážeme pomocí dvojité indukce: Indukcí podle p ∈ N0:

Lemma 6. ∀G ∈ CIR(k, 0, q) : χ(G) ≤ k(q − 1) pro q ≥ 2.
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x1 x2 xi xp y1 y1 y2 y2 yi yi yq yq x1 x2 xi xp

Figure 11.1: Definice (p− q)-konfigurace.

Proof of lemma. Indukcí podle q ∈ N0. Pokud q = 2 tak můžeme pozorovat, že všechny obloučky protínají
společnou souvislou přímku. Tím pádem ∀k : CIR(k, 0, 2) ⊆ PER které jsou perfektní.

Nyní nechť q > 2. Nechť G ∈ CIR(k, 0, q), vrcholy G rozdělíme na 2 části V1, V2 tak, že

• V1 bude indukovat graf z CIR(k, 0, 2) a

• V2 bude indukovat graf z CIR(k, 0, q − 1).

Označme π jakožto nejpravější levý konec obloučku. Potom V1 jsou vrcholy, které mají levý konec vlevo od
π. A V2 jsou vrcholy, které mají levý konec napravo od π. Pak už použijeme indukci.

Lemma 7. Nechť p ≥ 1, q ≥ 1. Potom ∀G ∈ CIR(k, p, q) : vrcholy G lze rozdělit na 2 části VA, VB tak, že každá
komponenta G[VA] i G[VB ] patří do CIR(k, p− 1, 2q + 1).

Corollary. Lze vzít g(k, p, q) = g(k, p− 1, 2q + 1) tedy tvrzení pak platí.

Proof of lemma. Mějme G ∈ CIR(k, p, q). BÚNO: G je souvislý a máme danou reprezentaci. Nechť x0 je vrchol
G jehož oblouček má nejlevější levý konec. Definujeme Vi := {x ∈ V (G) : nejkratší cesta v G od x0 do x má
délku i}.

Observation. Pokud vede hrana z Vi do Vj tak |i− j| ≤ 1.

Observation. Z každého vrcholu Vi+1 vede aspoň 1 hrana do Vi.

Nyní tvrdíme, že žádná komponenta G[Vi] neobsahuje (p− 1, 2q + 1)-konfiguraci.
Nechť C je komponenta G[Vi] pro spor obsahující (p−1, 2q+1)-konfiguraci. Označme yq+1 nějaký oblouček

w musí protnout yq+1, tedy w ∈ Vi−1. Aspoň jeden konec je mimo C. Vi−1 = V0 tedy hotovo. Kdyby měl oba
konce v C, tak nelze protnout oblouček z Vi−2.

Nyní nechť x1, . . . , xp−1, y1, . . . , y2q+1 je (p − 1, 2q + 1)-konfigurace. Nechť I je interval mezi nejlevějším a
nejpravějším koncem obloučku v C.

Observation. Každý soused w ∈ Vi−1 vrcholu yq+1 musí mít jeden konec mimo I.

Potom w, x1, . . . , xp−1, y1, . . . , yq nebo w, x1, . . . , xp−1, yq+2, . . . , y2q+1 je (p, q)-konfigurace v G, což je spor.
Závěrem VA := ∪i sudéVi a VB := ∪i lichéVi.

11.2 χ-unboundedness of SEG graphs
Definition 35. SEG is the class of graphs of intersection graphs of segments in the plane.

Now the question might be if SEG graphs are χ-bounded or not. This was firstly stated by Erdös. The
answer came later by the following theorem.

Theorem 71 (Pawlik, Kozik, Krawczyk, Lagos, Micek, Trotter, Wolezak, 2012). ∀k ∈ N there exists triangle-
free graph Gk ∈ SEG with χ(Gk) ≥ k.

Definition 36. L-curve is a union of a horizontal and vertical segment sharing a common bottom-left endpoint.
L-graph is an intersection graph of L-curves.

Theorem 72. Any L-graph is also SEG-graph.
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Proof. Suppose L = {l1, l2, . . . , ln} is a set of L-curves, we will show by induction on |L| = n that there is a set
S = {s1, s2, . . . , sn} of segments s.t. li ∩ lj 6= ∅ ⇔ si ∩ sj 6= ∅, and moreover:

1. all s1, . . . , sn lie in the half plane below the x-axis;

2. si touches the x-axis if and only if li can be extended upwards to infinity without crossing any other
lj ∈ L;

3. left-to-right order of si’s touching the x-axis is the same as for li’s.

Now for n = 1 it is simple, see Fig. 11.2, and for n > 1 without loss of generality ln has topmost horizontal
part. By induction we represent L′ = {l1, . . . , ln−1} by S ′ = {s1, . . . , sn−1} then

1. shorten the si if li no longer can extend upwards and

2. insert sn touching x-axis, nearly horizontal. See Fig. 11.3.

l1

(a) L-curves.

x

p1

(b) Segments.

Figure 11.2: Simple of start for an induction.

l1

l2

l3

l4

(a) L-curves.

x

p1

p2 p3

p4

(b) Segments.

Figure 11.3: Simple example for conversion.

Proof of theorem 71. In fact we show that ∀k ∈ N there exists triangle-free L-graph Gk with χ(Gk) ≥ k.

Definition 37. A configuration is

1. a collection of L-curves inside the unit square [0, 1]× [0, 1], whose intersection graph is triangle-free;

2. a set {P1, . . . , Pm} of ”probes” which are pairwise disjoint rectangles inside [0, 1]× [0, 1] touching its bottom
boundary;

3. any L-shape from the collection intersecting a probe Pi must cross it from left to right;

4. the L-shape crossing a given probe are pairwise disjoint.

We will construct two sequences of A1, A2, A3, . . . and B1, B2, B3, . . . of configurations s.t.:

1. ∀k ∈ N in any proper coloring of the L-curves in Ak, the L-curves seen inside the probes use at least k
different colors.
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(a) Example of configuration where we have two probes
in a [0,1] box with four L-curves.

(b) Counterexample of violating the definitions 3 and
4.

Figure 11.4: Example and counterexamples of the definition.

Figure 11.5: Start of the induction with one probe and one L-curve.

2. ∀k ∈ N in any proper coloring of the L-curves in Bk there exist a probe of Bk which is crossed by L-curves
of at least k different colors.

By induction for k = 1 it is straightforward, see Fig. 11.5. Now we show two parts.

1. From Bk to Ak + 1. See Fig. 11.6.

(a) Insert one new L-shape inside every probe of Bk and
(b) replace each probe by 2 new probes.

2. From Bk and Ak+1 to Bk+1. See Fig. 11.7.

(a) Insert a small copy of Ak+1 near the top of every probe of Bk and
(b) extend the probes of these small copies all the way down to obtain probes of Bk+1.

Now we may ask ourselves if this prove can be extended to some other type of intersection graphs. Well
indeed it can be done. Note that arc-connected set means that all pairs from the set can be connected via an
arc.

Fact. For any compact arc-connected set X ⊆ R2 other then an axis parallel rectangle there is a triangle-free
graph Gk, χ(Gk) ≥ k, which is the intersection graph of horizontally and vertically scaled copies of X.

Definition 38. A graph G is d-degenerate if every non-empty subgraph of G contains a vertex of degree at most
d.

Observation. G is d-degenerate then χ(G) ≤ d+ 1.

Proof. This observation can be seen by induction. Lets take u which has deg(u) ≤ d now take G − u which is
also d-degenerate and therefore by induction hypothesis colorable by d+ 1 colors. Lets take such coloring and
now give u a possible color. Because it only has d neighbors we will have at least 1 possibility.
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Bk

(a) Simplification with two probes.

Bk → Ak+1

(b) Two new L-curves and four new probes.

Figure 11.6: Conversion from Bk to Ak+1.

Bk

(a) Simplification with two probes.

Bk & Ak+1 → Bk+1

(b) Copies of Ak+1 and prolonged probes.

Figure 11.7: Conversion from Ak+1 and Bk to Bk+1.

11.3 Axis-parallel rectangles intersection graphs
Theorem 73 (Asblund, Grunbaum). If G is an intersection graph of axis parallel rectangles in the plane then
χ(G) ≤ O(ω2(G)).

Proof. Suppose we have G = (V,E) as above: each vertex u ∈ V is represented by a rectangle Ru. Let
E = E1∪̇E2 as follows

1. {u, v} ∈ E1 if a vertex of Ru is inside Rv or vice versa (Fig. 11.8a)

2. E2 = E \ E1 if it is cross-like (Fig. 11.8b).

(a) One vertex is inside the other rectangle. (b) Cross-like intersection.

Figure 11.8: Two possibilities.

Lets denote G1 = (V,E1), G2 = (V,E2) and k = ω(G). We will show χ(G1) = O(k) and χ(G2) = O(k).
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• For G1 we claim that |E1| ≤ 4k · |V | (and any subgraph of G1 induced by W ⊆ V has at most 4k · |W |
edges). This is because each vertex of a rectangle is inside at most k − 1 other rectangles, due to the
maximal clique. So this means one for each vertex of a rectangle is in total 4(k − 1). Now we direct an
edge uv if vertex of Ru is inside Rv. Thus the outdegree of any vertex is ≤ 4(k−1) so |E1| ≤ 4(k−1) · |V |.
Hence G1 (and any of its induced subgraphs) has average degree 2|E1|

|V | = 8(k − 1). So the min degree is
≤ 8(k − 1) therefore it is 8(k − 1)-degenerate and hence χ(G1) ≤ 8(k − 1) + 1.

• For G2 we claim that χ(G2) = ω(G2) = O(k) because G2 is a comparability graph (for example sort the
boxes from tallest to shortest).

• For G we have χ(G) ≤ χ(G1) · χ(G2) = O(k2). For this lets have E1∪̇E2 and see Fig. 11.9. That is we
have coloring 1, 2, . . . , p colors for E1 and 1, 2, . . . , q colors for E2 and we create a coloring by tuples (x, y)
where x ∈ [p] and y ∈ [q].

(1,1)

(2,1)(3,1) (2,2)

(1,3)

(1,3)

Figure 11.9: Disjoint union of edges for coloring.

11.4 1-String with big girth
Now we will continue further and see that L-graphs ⊆ (proper, i.e. not overlapping segments) SEG ⊆ 1-String
⊆ String. For this we need to see the definitions first.

Definition 39. G ∈ 1-String if G has a String representation in which every two strings intersect at most once.

Definition 40. The girth of a graph G is the length of the shortest cycle in G, if G has no cycle then girth is
+∞. We will denote girth of G as γ(G).

With the newly established terminology we have previously shown that L-graphs of girth ≥ 4 have unbounded
χ, but what about girth ≥ 5 (or 6, . . . ). Also we will give a remark which is that for arbitrary large girth and
chromatic number can be created. This can be shown by probabilistic techniques.

Theorem 74 (Kostochka & Nešetřil). Let G be a 1-String graph, then

if γ(G) ≥ 5 ⇒ χ(G) ≤ 6 (degeneracy ≤ 5),
if γ(G) ≥ 6 ⇒ χ(G) ≤ 4 (degeneracy ≤ 3),
if γ(G) ≥ 8 ⇒ χ(G) ≤ 3 (degeneracy ≤ 2).

Proof. Let G = (V,E) be a connected 1-String graph, with a given 1-String representation. n = |V |,m = |E|.
We will show the minimal degree of this graph where the degeneracy will follow, since its subgraphs can only
have larger girth. Let H = (VH , EH) be a plane graph whose drawing is obtained by placing a vertex on every
crossing of strings of G, pieces of string between adjacent crossings are the edges of H. Recall Euler’s formula
v − e+ f = 2 ≥ 0.
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v = |VH | = 1

2

∑
v∈V

deg(v) = m

e = |EH | =
∑
w∈V

(deg(w)− 1) =

(∑
w∈V

deg(w)

)
− n = 2m− n

f = # of faces of H

Observation. If H has a face bounded by a cycle of length l, then G has a closed walk of length l in which
each edge appears at most once. Hence γ(G) ≤ l.

And consequently every face of H is incident to at least γ(G) edges of H. Hence f · γ(G) ≤ 2e.

f ≤ 2e

γ(G)
=

4m− 2n

γ(G)

So we can use the following computation.

0 < v − e+ f ≤ m− 2m+ n+
4m− 2n

γ(G)
= n

(
1− 2

γ(G)

)
−m

(
1− 4

γ(G)

)
This enforces the following.

m

(
1− 4

γ(G)

)
< n

(
1− 2

γ(G)

)
Thus the min. degree ≤ average degree which is

=
2m

n
≤

2
(
1− 2

γ(G)

)
(
1− 4

γ(G)

) =
2(γ(G)− 2)

γ(G)− 4

Lastly we compute the exact values. If γ(G) ≥ 5 then min degree < 6 so ≤ 5 hence χ(G) ≤ 6. If γ(G) ≥ 6 then
min degree < 4 so ≤ 3 hence χ(G) ≤ 4. If γ(G) ≥ 8 then min degree < 3 so ≤ 2 hence χ(G) ≤ 3.

Now we will further generalize to String graphs, which will use completely new topic which is called Game
of robber and cops. Note that there exists more versions of this game.

11.5 Game of robber and cops
We have a given graph G. Then 1 robber (○) and c cops (SQUARE). This game is for 2 players. Both players take
turns. First one plays with cops and the second with robber.

Rules.

Start of the game: First player places cops on vertices of graph G. Then second player places the
robber on some vertex.

Single turn: First player can with each cop either move to adjacent vertex or stay in the same one.
Then the robber can move to adjacent or stay in the same vertex.

Goal: If both cop and robber end up in the same vertex cops have won. Alternatively robber wants
to stay as long as possible.

Example. We have an easy example of the given graph and robber and cops. See Fig. 11.10

Definition 41. The cop-number cn(G) := smallest number of cops for which the cops have a winning strategy
on G. And for class C of graphs we define cn(C) := sup{cn(G), G ∈ C, G connected}.

Example (Cycles). For cycles Cn with n ≥ 4 we can easily see that cn(G) = 2 because we may put two cops in
one vertex and then enclose the circle by two pats. Alternatively one is not enough since the robber may only
wait and if cop is in the neighboring vertex the robber moves away.
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SQUARE

SQUARE

SQUARE SQUARE ○

Figure 11.10: Example for cops and robber game.

Example (Int). In Int which is class of interval graphs we may find out that cn(Int) = 1. Firstly we sort the
intervals by its left endpoints, then place cop in the leftmost interval. The strategy is either catch a robber or
move right to the next interval. If robber could move away the robber must stay way apart to the right or left.
But note that if he would be in the left we didn’t follow our strategy.

Alternatively we can say the Int has a clique-path decomposition and in each step we are either in the same
clique so we can catch the robber or we may move to the next clique.

Proposition 75. Let G be a graph with γ(G) ≥ 5. If every vertex of G has degree ≥ d, then cn(G) ≥ d.

Proof. If v is the robbers current vertex and v1, v2, . . . , vk are the neighbours of v, then each cop can be in the
closed neighbourhood of at most one of v1, v2, . . . , vk. If k > # of cops, robber may move to a ”safe” neighbour
vi if needed.

Consequence. If C is a class of graphs closed under induced subgraphs with cn(C) = c < +∞, then every graph
G ∈ C of girth ≥ 5 is c-degenrate and hence χ(G) ≤ c+ 1.

Theorem 76 (Das and Gahlawat, 2022). cn(String) ≤ 13.

We won’t show this theorem. Also the lower bound is known to be 3. And String graphs of girth ≥ 5 have
χ ≤ 14 which follows from the theorem and proposition 75.

Theorem 77. cn(Outer planar) ∈ {3, 4}.

Proof of the lower bound. We may construct a so called ”3 × 5 grid” see Fig. 11.11 for the graph itself and a
representation. Then if 2 cops are adjacent to the robber then there is always one vertex for ”lazy strategy”
robber.

Figure 11.11: Graph on the left and on the right its representation.

Theorem 78. cn(Planar) = 3.

Proof. For the lower bound we can use the proposition 75 and draw a planar graph which has girth γ = 5, one
such graph is a dodecahedron, see Fig. 11.12.

Now for the upper bound we will show a strategy for 3 cops on connected planar graph G. Firstly one
lemma.
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Figure 11.12: Dodecahedron as a planar graph.

Lemma 8 (cop guards path P ). Let G be a graph, let P be a shortest path from x to y in G, x, y ∈ V (G).
Then 1 cop after finitely many moves can take position on P and play a strategy that catches the robber if the
robber takes any vertexof P .

Proof. For simplicity denote d(u, v) as the distance from u → v, c for cop and r for robber. Strategy: If there
is a vertex w ∈ P s.t. d(w, c) > d(w, r) on cops turn, then c moves towards w, otherwise c stays in place.

If there is such w, then for w′ ∈ P on the other side of c than w, we have d(r, w′) > d(w′, c). Eventually,
the game reaches a situation, where after every cop move ∀w ∈ P : d(c, w) ≤ d(r, w).

The overview of the whole strategy is to constrain the robber by two paths and use the third cop to shrinken
the graph even more. We will restrict the robber to smaller and smaller subgraphs G = G1 ) G2 ) G3 ) · · · ) ∅
s.t. for Gi:

I) There are two paths P,Q each guarded by 1 cop, Gi is the connected component of G\ (P ∪Q) containing
the robber. P,Q share the same endpoints xi, yi and P is the shortest xi → yi path in Gi ∪ P ∪Q and Q
is the shortest xi → yi path in Gi ∪Q. Where Gi ∪ P ∪Q is the same as Gi ∪G[P ] ∪G[Q].

II) There is a vertex x s.t. Gi is a component of G− x containing the robber, x is occupied by a cop.

Now for the strategy itself. Cops will take any vertex x and robber takes any vertex y 6= x, let G2 be the
component of G− x containing y, therefore we get type II. Now consider subcases of the starting type.

Type II: consider few subcases.

– x has only one neighbour z in Gi, so put a cop there, and let Gi+1 be the component of Gi− z containing
the robber. Therefore we obtain again type II.

– x has more neighbours, choose z 6= y neighbour of xi in Gi, P := shortest xz-path in Gi. Guard P with
a cop and let Gi+1 be the component of Gi \ P , so we obtain type I.

Type I: again some subcases.

– If Gi is adjacent to one vertex of P ∪Q then we have type II. So see above case.
– Otherwise there is a path R from x to y in P ∪Q ∪Gi, containing a vertex from Gi. Let R be shortest

such path, put cop to guard it. Afterwards either P or Q is no longer needed to constraint the robber so
we will have free cop and smaller graph. This can be seen by dividing the face Gi by the path R, after
the cops guard all three paths then the orbber is left out in one face which is constrained by R and one of
P or Q. Also we won’t need to guard whole R and the second path, since the face may be way smaller,
only the common endpoints.
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Chapter 12

PQ trees

Notation. A set {1, . . . , n} will be denoted as [n]. Then permutation of [n] is a sequence π = π1, π2, . . . , πn

in which each i ∈ [n] appears exactly once. Interval in a permutation π of [n] is a set S = {πi, πi+1, . . . , πj} for
some 1 ≤ i ≤ j ≤ n. Cyclic shift of π1, π2, . . . , πn is a permutation of the form πi, πi+1, . . . , πn, π1, π2, . . . , πn−1

for some i ∈ [n]. Lastly cyclic interval of π is interval in a cyclic shift of π.

Example. Lets see an example for a permutation π = 31524 of [5]. Then {1, 2, 5} is an interval and {2, 3, 5} is
not an interval. Furthermore its cyclic shift can be 52431. Where one cyclic interval of the original permutation
can be {2, 3, 4}.

Now we will introduce two problems.

Consecutivity.

Input: n ∈ N, sets S1, S2, . . . , Sk ⊆ [n].

Question: is there a permutation π of [n] in which S1, S2, . . . , Sk are all intervals?

Cyclic consecutivity.

Input: n ∈ N, sets S1, S2, . . . , Sk ⊆ [n].

Question: is there a permutation π of [n] in which S1, S2, . . . , Sk are all cyclic intervals?

Lemma 9. Consecutivity can be reduced to cyclic consecutivity.

Proof. We are given n ∈ N, and sets S1, S2, . . . , Sk ⊆ [n]. Now see the following: ∃π of [n] in which S1, . . . , Sk

are intervals ⇐⇒ ∃π+ of [n + 1] in which S1, . . . , Sk are cyclic intervals. For one way see that if we have π
which has intervals S1, . . . , Sk and create (π, n+1) = π+ permutation which has cyclic intervals. For the other
way lets have π+ of [n + 1] that has cyclic intervals in S1, . . . , Sk, choose the cyclic shift of π+ with n + 1 at
the end. Then π+ = (π, n+ 1) where π will be the permutation of [n] containing S1, . . . , Sk intervals.

Cyclic permutation is determined by a permutation π and it is the set of all cyclic shifts of π. (Unformally
we may draw a circle with the elements on the boundary and all cyclic permutations are when going clockwise
around the circle.) We also denote Cycn(S1, . . . , Sk) as the set of cyclic permutations of [n] in which all the sets
S1, . . . , Sk are cyclic intervals.

Definition 42. A PQ-tree of order n is an (unrooted, undirected) tree with n leaves labeled 1, 2, . . . , n and two
types of interval nodes: P-nodes ○, Q-nodes ○, every internal node has a prescribed cyclic permutation of its
neighbours.

Definition 43. πT for PQ-tree T is the cyclic permutation of [n] induced by the clockwise order of the leaves
of T .

Definition 44. Two PQ-trees T, T ′ are equivalent if T ′ can be obtained from T by a sequence of the following
operations:

1. change the cyclic order of neighbours of P-node arbitrarily, and

2. reverse the order of neighbours of Q-node.
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(a) PQ-tree T with permutation πT = 14378625.
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(b) Equivalent PQ-tree T ′ with πT ′ = 15237864.

Figure 12.1: Example of PQ-tree, its permutation and equivalent tree.

Definition 45. The set of cyclic permutations represented by T , denoted by RT is {πT ′ |T ′ equivalent to T}.

Theorem 79. For any n ∈ N, sets S1, . . . , Sk ⊆ [n], we can, in time O(n +
∑k

i=1 |Si|) determine whether
Cycn(S1, . . . , Sk) is non-empty, and if it is, construct a PQ-tree T such that RT = Cycn(S1, . . . , Sk).

Construction of the PQ-tree. We won’t show the whole proof, but only the construction of T which will be
shown by an induction on k. For k = 0 we create one internal P-node which has all [n] leaves ordered as
1, 2, . . . , n clockwise. Suppose for k > 0 we have constructed PQ-tree Tk−1 with RTk−1

= Cycn(S1, . . . , Sk−1).
The goal is to find T with RT = Cycn(S1, . . . , Sk).

Let e be an edge in Tk−1, then Tk−1 − e has two components ”substrees determined by e”. Then subtrees is
full if each of its leaves is in Sk, empty if none of its leaves are from Sk and mixed otherwise. Then an edge
e of Tk−1 is mixed if both subtrees of Tk−1 − e are mixed.

Observation. Mixed edges form a connected subgraph of Tk−1.

Proof. If it is not true then there is a path connecting two mixed edges, but the edges on the path has to be
also mixed.

Observation. If there is a vertex of Tk−1 incident to three or more mixed edges, then Cycn(S1, . . . , Sk) = ∅.

Suppose mixed edges form a path P . Now we will show steps to create new PQ-tree.

1. Replace Tk−1 by an equivalent tree in which around every vertex of P the edges towards full subtrees are
above P , the edges towards empty subtrees are below. If this is not possible, then Cycn(S1, . . . , Sk) = ∅.

2. Replace every node vi of P by two nodes v+i connected to the full subtrees only and v−i connected to the
empty subtrees only.

3. Insert a new Q-node adjacent to v+1 , v
+
2 , . . . , v

+
m, v−m, v−m−1, . . . , v

−
1 in this order (m is for the number of

nodes of P ), call the new node w.

4. If v+i or v−i is a Q-node, then contract the edge wv+i (or wv−i ). But keep the order.

5. If there is a node of degree 2, suppress it, if v+i or v−i has degree 1, delete it. (Where suppressing is
swapping the 2-edge path by a single edge.)

The correctness of this process involves more checking if all representations are still preserved and that all
present in the new one was already there.

For time complexity one must use clever data structure and use amortization arguments to obtain such
result.

12.1 Applications
12.1.1 Recognition of INT in linear time
Recall that we have already shown that INT = Chordal ∩ co-Co and also G ∈ INT ⇐⇒ the maximal cliques
of G can be arranged into a sequence Q1, Q2, . . . , Ql so that for every vertex v, the cliques containing v form
an interval (in the permutation of maximal cliques).

Note that from PQ-trees this can be solved in linear time O(|V |+
∑

v∈V |Sv|). Now we will dig deeper into
the details of each step.
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Algorithm 9 Idea of the algorithm for recognizing INT.
Require: Graph G = (V,E).
Ensure: Is G ∈ INT?

1: Create a set {Qi; i is maximal clique of G} = {Q1, Q2, . . . , Ql}.
2: ∀v ∈ V (G) : create a set Sv = {i; v ∈ Qi}.
3: Solve consecutivity for {Sv; v ∈ V } in [l].

1. We know that G is chordal ⇐⇒ G has PES Dog. Also we have shown how to compute PES in linear time.
Therefore create PES v1, . . . , vn. If it does not exists, return that G is not INT. From now on assume it
exists. Create ∀i = 1, . . . , n cliques Qi := {vi} ∪ {left neighbours of vi}. Firstly observe that all maximal
cliques are among these cliques (simply because all cliques have their rightmost vertex in PES, therefore
its Qi since it is maximal). Next we will discard Qi if ∃j : Qi ( Qj . Note that this happens if j > i and
vivj ∈ E and any more to the left neighbour of vj is also a neighbour of vi so we only need to compute
sizes |Qi| = Si and denote k as the number of left neighbours starting by vi.

• If k = Si then Qi ⊆ Qj .
• If k < Si then Qi * Qj .
• Also k > Si cannot happen.

2. We will also use PES.

Sv = ({i} ∪ {j|vj is a right neighbour of vi}) ∩ {k;Qk is maximal}

Which also implies that |Sv| ≤ right degree of v + 1. Therefore
∑

v∈V |Sv| ≤ |E|+ |V |. So all together it
is O(|E|+ |V |).

12.1.2 Planarity testing with PQ trees

Planarity testing.

Input: Graph G = (V,E).

Output: Planar embedding of G or a K5 or K3,3 minor of G.

For our usecase we will denote ”planar embedding” as the rotation scheme, which is for any v ∈ V , cyclic
order of edges incident to v in a planar drawing.

Definition 46. Fragment of a graph G = (V,E) induced by a set X ⊆ V contains

1. The subgraph of G induced by X.

2. For any edge e = {u, v} ∈ E s.t. u ∈ X and v /∈ X create new vertex se (”stump of e”) and an edge
{u, se}.

We say that fragment induced by X in G is good if both X and V \ X induces a connected subgraph of
G. Also a planar embedding of a fragment is good if all the stumps are embedded on the boundary of a single
face (”outer face”).

Observation. If G is planar, then also any good fragment has a good embedding.

From now on assume that G is 2-connected.

Fact. Any good embedding of a good fragment induces a cyclic order of the stumps. Moreover for any good
fragment with at least one good embedding, there is a PQ-tree whose leaves correspond to the stumps and which
represents precisely the cyclic orders of stupms in the good embeddings of the fragments.

Sketch of proof. Firstly generally for a graph H = (VH , EH) equivalence on EH e, f ∈ Eh : e ∼ f if either e = f
or e, f belongs to common cycle. Then classes of ∼ are 1. bridges and 2. biconnected components.

Now the constructions is roughly that we will replace all biconected components by Q nodes. Then cutvertices
to P nodes, stumps to leaves, bridge to edge and incidence between cutvertex and biconnected component will
also form an edge.

Every single operation with PQ-trees can be also done to change the embedding of the graph. It is also good
to show the other way and that if PQ-tree wouldn’t be able to keep pace with the embedding then there is a
K5 or K3,3 minor.
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Algorithm 10 Planarity testing.
Require: Graph G = (V,E).
Ensure: Planar embedding of G or a K5 or K3,3 minor of G.

1: Create T as a DFS tree of G.
2: Number its vertices in postorder (in order left-right-root).
3: Ti := subtree rooted in vertex numbered i and Fi := good fragment induced by vertices of Ti.
4: Proceed bottom to top and construct PQ-trees for F1, F2, . . . , Fn.

The exact procedure of building fragments is that in the leaf we just create a single P node and all its
stumps. Then by induction let all children have their PQ-trees. Lets take one of these PQ-trees and it has
stumps which has to be connected to the current vertex and other vertices. The former vertices has to be
arranged consecutive, if it is not possible then end. That is similar to the PQ-trees where we tried to put all
free subtrees to the above part and others to the below, now it is pretty much the same. Also in this step we
remember the orientation of the stumps that will be connected to the root. This will merge to one big Q node
and connect to the root which will be new P node. Also we will create such Q nodes for all children of the
current root.
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Chapter 13

SPQR trees

Before we show another interesting structure called SPQR-trees note that they are not related to the previously
mentioned PQ-trees. Also in this section we will be considering multigraphs without loops, i.e. graphs can have
parallel edges.

Definition 47. Let G = (VG, EG) be a biconnected multigraph, a skeleton of G is multigraph H = (VH , EH)
with these properties:

1. VH ⊆ VG;

2. every edge e = {u, v} ∈ EH represents a connected subgraph Ge of G (”pertinent graph of e”) which
contains the vertices u, v;

3. every edge of G belongs to exactly one pertinent graph;

4. for e, f ∈ EH , e 6= f , then V (Ge) ∩ V (Gf ) = e ∩ f .

1
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1314

1,2,3,4,5,6,7

98

10,11,12,13,14

1,2,3,4,5,6,7,8

9,10,11,12,13,14

Figure 13.1: Example of graph G and some of its skeletons.

Definition 48. Separation tree T of a biconnected G = (VG, EG) is a tree whose leaves correspond bijectively
to edges of G, every internal node α has degree ≥ 3 and has an associated skeleton Sα of G with deg(α) edges,
such that the edge sets of the pertinent graphs of Sα correspond to the sets of leaves in the components of T −α.

Definition 49 (SPQR-tree). An SPQR-tree of a biconnected multigraph is a separation tree T whose internal
nodes are of three types:

1. S-nodes (series): nodes whose skeleton is a cycle of length ≥ 3.

2. P-nodes (parallel): nodes whose skeleton is a graph with 2 vertices and ≥ 3 parallel edges.

3. R-nodes (ridged): nodes whose skeleton is a simple 3-connected graph.

Moreover, no two S-nodes are adjacent and also no two P-nodes are adjacent. Sometimes Q-node is referred as
leaf.
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Fact. Every biconnected multigraph has unique SPQR-tree which can be computed in linear time.

Theorem 80. Let G be a biconnected multigraph with m edges, m ≥ 3, let T be a separation tree of G. Then
all the skeletons in T have together at most 3m− 6 edges.

Proof. By induction on m. For m = 3 we have only one type of SPQR tree which is a tree with one internal
node and three nodes. In the internal node there can either be a triangle or three-parallel edges graph. But in
both case we have that 3m− 6 = 9− 6 = 3 which is true.

Let m > 3 and consider case 1: T has a single internal node, then it is also fine. Case 2 consider that T has
2 adjacent internal nodes α, β and |Eα| ≥ 2, |Eβ | ≥ 2. Split G into: Gα which is formed by Eα plus new edge
uv, similarly Gβ which is formed by Eβ plus new edge uv. Where u and v are the split vertices between α and
β. From these we create their separation trees, which will be made by ”replacing” the second vertex by a leaf
representing edge uv.

By ”disconnecting” edge αβ in T we obtain separation trees Tα, Tβ for Gα, Gβ respectively. Let k :=
|Eα|,m− k := |Eβ | and Gα has k + 1 edges and Gβ has m− k + 1 edges.

Finally use induction. Skeletons in Tα have at most 3(k + 1) − 6 edges and skeletons in Tβ have at most
3(m− k+1)− 6 edges. Therefore skeletons in T have at most 3k+3− 6+3m− 3k+3− 6 = 3m− 6 edges.

13.1 Create SPQR tree
In this section we will show some techniques how an SPQR tree can be constructed.

Definition 50. Suppose G = (VG, EG) is a biconnected multigraph, uv ∈ VG, u 6= v, edges e, f ∈ EG are in the
same separation class w.r.t. uv (that is e ∼uv f) if

1. e = f ;

2. there is a path containing e and f whose internal vertices are different from u, v;

3. there is a cycle containing e and f and containing at most one of u, v.

Fact. ∼uv is an equivalence on EG.

Definition 51. u, v are separation pair if ∼uv has more than one classes.

We may see that cuts are separation pairs, but in fact not the only. For example K4.

Definition 52. A separation pair is trivial if

1. ∼uv has two classes, one of them contains just an edge

2. ∼uv has 3 classes, all of them contains just one edge.

Observation. If G has non-trivial separation pair, then G is one of the following graphs: two vertices with
two parallel edges, two vertices with three parallel edges, triangle, any simple 3-connected graph.

Now we will show how to find an SPQR tree:

1. Start with one internal node having entire G in it and |EG| leaf nodes.

2. As long as any skeleton has non-trivial separation pair uv then split skeleton along uv.

• Splitting skeleton S = (VS , ES) along a non-trivial separation uv. Firstly partition ES into two parts
EI , EII s.t. each part has at least two edges and each part is a union of ∼uv-classes.

3. Merge adjacent P-nodes and S-nodes.

• When we have two S-nodes then we have two circles where one edge is representing the other graph
of the second node. So together they form one circle. For P-nodes we have some parallel edges in
between two vertices, where one is for the other part of the graph. Thus all together it is all of their
parallel edges together.

This procedure will lead to SPQR tree.
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13.2 SPQR-trees and planarity
We remind ourselves what a planar embedding of a connected graph is: rotation scheme (which is the cyclic
order of edges around vertex).

Theorem 81. A biconnected G is planar if and only if every skeleton in its SPQR-tree is planar ⇐⇒ every
R-skeleton is planar.

Proof. ”⇒” K is a skeleton of G ⇒ G has a subdivision of K as a subgraph. Thus K has to be planar.
”⇐” We have embedding for all skeletons. Choose arbitrary root of SPQR-tree and process from bottom to

top. For every edge of every skeleton other than the edge corresponding to the parent: construct the embedding
of its pertinent graph, where the poles are in the same face (poles are the two special vertices). For vertex
representing a skeleton: ignore the edge of a parent and combine the children to the current skeleton.

Definition 53. G biconnected graph with SPQR-tree T , K skeleton of T , G embedding of G, K embedding of
K, G is consistent with K if

1. For every edge e = {x, y} ∈ E(K), the edge of Ge (pertitent graph of e) incident to x form a cyclic interval
in the rotation scheme x in G, same for y.

2. For e, f, g ∈ E(K) meeting in x, for e′ ∈ Ge, f
′ ∈ Gf , g

′ ∈ Gg meeting in x the order of e, f, g in K is the
same as the order of e′, f ′, g′ in G.

Theorem 82. G,T as above, then

1. For every embedding G of G each skeleton in T has unique embedding consistent with G.

2. For any choice of an embedding of each skeleton of T , G has unique embedding consistent with all skeletons.

Proof. We will showcase both properties.

1. We have G embedding of G and skeleton K.

(a) Firstly consider x is not an articulation, since G and K are biconnected thus they have to be paths
to y. We have 4 paths from x to y either f1, f2 are in the same pertinent which is not possible since
they would meet in vertex of K, or if they are different from P-skeleton, then it is R (ridgit) thus
there would be the path. Which is a contradiction. Thus it is P-skeleton. Hence the first part of the
definition is done.

(b) Due to the cyclic intervals for e, f, g ∈ E(K) they form a cyclic intervals. To show that it forms an
embedding choose a path representing in its edge in K and draw it.

2. Fix an embedding of every skeleton. There exist one embedding that was constructed like in the previous
theorem and we have two embeddings of G s.t. G 6= G′ so one cyclic order differs. We have to find node
where e′, f ′, g′ are in different pertinent. We may find an internal node which separates e′, f ′, g′ so it
suffices what we were looking for. So due 2. only one G or G′ can be consistent.

Note. S-skeleton has exactly 1 embedding. R-skeleton has exactly 2 embeddings. P-skeletons with m edges has
(m− 1)! embeddings.
We can have more restricitions or we may count how many embeddings given graph has.

Partially Embedded Planarity (or PEP for short).

Input: graph G = (VG, EG), subgraph H = (VH , EH), embedding H of H.

Output: Is there a way to extend H into an embedding of G?

Remark. This is a special example of general cases such that partially representation is given and we have to
construct the whole representation.
Note. Embedding of H is given by

1. rotation scheme
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2. for every cycle C on the boundary of a face of H on every vertex x /∈ C, specify on which side of C x is
drawn. – ”cyclic-vertex position”

Note that again it does not keep the information about the outer face.

Theorem 83. PEP can be solved in polynomial (in fact linear) time.

Proof. Assume G is biconnected. Then see this algorithm.

1: Compute SPQR-tree of G. This can be uniquely computed in linear time.
2: if G is not planar then
3: return
4: end if
5: for all skeletons do
6: Determine whether it can be embedded in not obviously wrong way or have a counter example.
7: end for

Definition 54. Let K be a skeleton of the SPQR tree of G, an embedding K of K is obviously wrong if

1. H has three edges e, f, g meeting in a single vertex x, K has three edges ē, f̄ , ḡ, each having one of e, f, g
in its pertinent graph, the cyclic order of e, f, g in H differs from the cyclic order if ē, f̄ , ḡ in K.

2. H has facial cycle C and a vertex x /∈ V (C), the edges of C projects to more then one pertinent graph
of K, hence the edges of K into which the edges of C projects form a cycle C̄, and x is in the pertinent
graph of an edge Ē /∈ V (C̄), and in K the edge ē is on the wrong side of C̄.

Observation. If a skeleton K is embedded in obviously wrong way, then the embedding G of G induced by the
skeletons does not extend H.

Theorem 84. If every skeleton of the SPQR-tree of G is embedded in a way that is not obviously wrong, then
the embedding G of G induced by these skeleton embeddings extends H.

Proof. For the two rules if they are satisfied then the extension is rather straightforward. That is if we have
some cyclic order in H we just insert new edges in between to the new cyclic order in G. For the outer vertex
x outside cycle C it is even easier.

But suppose that the first rule is not satisfied. Then in SPQR tree is unique node having three leaves in
different part. This node and particularly its skeleton must have been obviously wrong.

Now if the second rule is note satisfied then take path from x towards C̄. y ∈ C̄ first met and e, f ∈ C̄
having y as one vertex and g /∈ C̄ be the last edge of the path. Find separation node. Let x ∈ ē /∈ C̄ where ē is
skeleton edge and C̄ cycle in the skeleton of C. Then this K is obviously wrong embedding.

Theorem 85. There is a polynomial algorithm which for a given H and SPQR-tree skeleton K of G determines
whether K has an embedding which is not obviously wrong.

Proof. I) If K is S-skeleton: it has 1 embedding, which is never obviously wrong.

II) If K is R-skeleton: it has 2 embeddings, so we just check the properties for both possible embeddings.

III) If K is P-skeleton with d ≥ 3 edges: it has (d − 1)! embeddings. Do the following. Exy := edges of K
which contains edge of H incident ot x and also edge of H incident ot y in their pertinent graph.

1. Determine cyclic order of Exy that is not obviously wrong.
2. Insert into the cyclic order of Exy edges having an edge of H incident to x or y, in a way that is not

obviously wrong.
3. For edge if K that contains no edge of H incident to x or y in its pertinent graph: insert it in a way

that is not obviously wrong (if possible).

Note that if constraint related to cycle vertex position affects me, then it is because of a cycle C̄ in K
where both edges of C̄ are in Exy.
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Chapter 14

Contact graphs of discs

Firstly we have to define what a contact graph of discs is. For v ∈ V associate disc, if {xy} ∈ E then discs
touch in one point.

Observation. G has a contact disc representation ⇒ G is planar.

Theorem 86 (Koebe). G is planar ⇐⇒ G has a contact disc representation.

In this section we will be proving this theorem. Note that from the first observation we have already proven
”⇐” part.

Observation. It is enough to prove ”⇒” when G is maximal planar, i.e. a triangulation.

Proof. Because every planar graph G is an induced subgraph of a triangulation G+. Note that subgraph is easy
to see. And when speaking about induced graph we proceed similarly. That is introduce new edges to have
triangulation and then introduce a vertex in the middle of every new edge. Lastly add other edges to obtain
triangulation.

Proof of Koebe theorem 86. We will set n := |V | ≥ 4, fix a plane drawing of G. We will also assume that
V = {1, 2, . . . , n} and vertices on the outer face are 1, 2, 3. Goal is to have (r1, r2, . . . , rn) ∈ Rn, ri > 0 s.t. there
exists disc representation of G where i is represented by a disc of radius ri, the disc touching a disc representing
i have the order given by the drawing of G.

Define

R =

(r1, r2, . . . , rn) ∈ Rn;∀i : ri > 0︸ ︷︷ ︸
interior

;

n∑
i=0

ri = 1︸ ︷︷ ︸
hyperplane


which is an n− 1 simplex. Suppose i, j, k forms a face of G, then: αi(

−→r , f) for f = {i, j, k} face, −→r ∈ R is the
angle at i in the triangle i, j, k. Total angle at i:

ti(
−→r ) :=

∑
f face 3i

αi(
−→r , f).

Now we have to show two main steps which will lead to the full proof.

I) Show that ∃
−→
r∗ ∈ R : (t1(

−→
r∗), t2(

−→
r∗), . . . , tn(

−→
r∗)) = ( 2π3 , 2π

3 , 2π
3 , 2π, . . . , 2π).

II) Show that there is a contact disc representation t∗ with radii
−→
r∗.

Ad I: Firstly define T : R → Rn, defined as T (−→r ) = (t1(
−→r ), t2(−→r ), . . . , tn(−→r )). Now we have the following

substeps.

a) T is injective.

b) There is a set A ⊆ Rn s.t. Im(T ) ⊆ A.

c) t∗ ∈ A

d) T is onto A, i.e. Im(T ) = A.
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Observation. αi(
−→r , {i, j, k}) is decreasing in ri, increasing in rj , rk.

Notation. For I ⊆ V : F (I) is the set of faces of G incident to at least one vertex in I.

Lemma 10. T is injective.

Proof of lemma (also step a). Choose −→r ∈ R,−→r ′ ∈ R,−→r 6= −→r ′, I = {i ∈ V : ri < r′i}, where I 6= ∅ and also
I 6= V . Also denote T (−→r ) =: (t1, t2, . . . , tn), T (

−→r ′) =: (t′1, t
′
2, . . . , t

′
n).∑

i∈I

ti − t′i =
∑
i∈I

∑
f3i︸ ︷︷ ︸

switch sums

(αi(
−→r , f)− αi(

−→r ′, f)) =
∑

f∈F (I)

∑
i∈f∩I

(αi(
−→r , f)− αi(

−→r ′, f))︸ ︷︷ ︸
denote it as s(f)

We have to show that the previous sum is positive. See these subcases:

• If |f ∩ I| = 3, then s(f) = 0.

• If |f ∩ I| = 1, then s(f) = αi(
−→r , f)− αi(

−→r ′, f) > 0.

• If |f ∩ I| = 2, then αi(
−→r , f) − αi(

−→r ′, f) + αj(
−→r , f) − αj(

−→r ′, f) = (π − αk(
−→r , f)) − (π − αk(

−→r ′, f)) =
αk(

−→r ′, f)− αk(
−→r , f) > 0.

Where the inequalities hold from the observation of α function. Also note that one of the last two cases must
occur, since I 6= V nor I 6= ∅. Therefore the whole sum is > 0.

Definition 55. A := {(t1, t2, . . . , tn) ∈ Rn,
∑n

i=1 ti = (2n − 4)π, ∀I ⊆ V : 1 ≤ |I| ≤ n :
∑

i∈I ti < π · |F (I)|}
which is also an interior of n-1 dimensional polytope embedded in n dimensional space.

Lemma 11 (b). ∀−→r ∈ R : T (−→r ) ∈ A.

Proof. Fix −→r ∈ R and denote T (−→r ) =: (t1, t2, . . . , tn).
n∑

i=1

ti =

n∑
i=1

∑
f3i

αi(
−→r , f) =

∑
f face of G

∑
i∈f

αi(
−→r , f)︸ ︷︷ ︸

π

= (2n− 4)︸ ︷︷ ︸
number of faces in triangulation

π

∑
i∈I

ti =
∑
i∈I

∑
f3i

αi(
−→r , f) =

∑
f∈F (I)

∑
i∈f∩I

αi(
−→r , f)︸ ︷︷ ︸

π if all vertices are in I otherwise less

< |F (I)| · π

Fact (Brower: Invariance of domain theorem). Let M ⊆ Rd be an open set, let f : M → Rd be continuous and
injective, then Im(f) is again open (and f−1 : Im(f) → M is continuous).

So Im(T ) is open relatively to hyperplane ”
∑

ti = (2n− 4)π”.

Lemma 12. Let −→r (1),−→r (2), . . . ,−→r (n) be a sequence in R whose limit is a vector −→r (∞) on the boundary of R,
let −→t (∞) be any accumulation point of T (−→r (1)), T (−→r (2)), . . . . Then −→

t (∞) is on the boundary of A.

Proof. Choose −→r (1) ∈ R,−→r (2) ∈ R, · · · → −→r (∞) ∈ ∂R = {(r1, r2, . . . , rn) ∈ Rn,
∑n

i=1 ri = 1,∀i : ri ≥
0,∃i : ri = 0}. Also set I := {i ∈ V, r∞i = 0},−→t ∞ be accumulation point of (T (−→r (m)))∞m=1. Goal is
−→
t ∞ ∈ ∂A = {(t1, t2, . . . , tn) ∈ Rn,

∑n
i=1 ti = (2n − 4)π, ∀I ⊆ V : 1 ≤ |I| ≤ n :

∑
i∈I ti ≤ π · |F (I)|,∃I ⊆ V :∑

i∈I ti = π · |F (I)|}. Then the claim is that
∑

i∈I t
∞
i = π|F (I)|. Where one can see in all the subcases (1 in

I, 2 in I and 3 in I) it always converges to π.

Lemma 13 (d). T maps R onto A.

Proof. Suppose not. Pick t0 := A\ Im(T ), pick t1 ∈ Im(T ) ⊆ A, consider the segment S from t1 to t0. Certainly
S ⊆ A since A is convex. Fix a point t2 ∈ S, s.t. t2 is the closest point to t1 not belonging to Im(T ). Consider a
sequence t′1, t

′
2, t

′
3, . . . on S∩ Im(T ) converging towards t2 and let r(i) := T−1(t′i) and let r∞ be an accumulation

point of r(1), r(2), . . . . Either r∞ ∈ R or r∞ is on the boundary of R. If the former is true then T is continuous
on R, T (r∞) = t2 /∈ Im(T ), which is a contradiction. If the latter is true, then obtain a contradiction with the
previous lemma: t2 is an (unique) accumulation point of T (r(1)), . . . but t2 is not on the boundary of A.

Conclusion: ∃−→r (∗) ∈ R, s.t. T (−→r (∗)) = ( 2π3 , 2π
3 , 2π

3 , 2π, . . . , 2π).

Claim 87 (II). G has a disc contact representation where vertex i is represented by a disc of radius r∗i .
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Proof. Step 1: G can be drawn so taht every edge {i, j} ∈ E(G) is represented by a segment of length r∗i + r∗j .
Pick a drawing of G. Construct (reduced) dual graph (that is vertex only for inner faces) G∗. Choose T ∗

spanning tree of G∗. Represent each inner face by a triangle of correct edge lengths, for every edge e∗ of T ∗

place the two triangles next to each other, so that they touch along the common edge.
E− : edges of G whose dual edges are not in T ∗. Then E∼ := E− \ {1, 2} forms a spanning tree of G.

Otherwise if there is a cycle then the dual tree does not connect the inner face of the cycle. And if it is
disconnected then T ∗ of the dual has a cycle.

We need to show ∀e ∈ E∼ the two adjacent faces are aligned correctly. Otherwise Ebad ⊆ E∼ the set of
bad aligned edges. If Ebad 6= ∅, there is a vertex x with degree 1 w.r.t. Ebad which is a contradiction with
tx(

−→r ∗) = 2π for x ∈ V \ {1, 2, 3}. So Ebad = ∅.
Step 2: Place disc of radius r∗i centered in vertex i.

Observation. If {i, j} ∈ E(G) ⇒ the disc around i and j touch.

Lemma 14. If {i, j} /∈ E(G) ⇒ disc around i and j are disjoint.

Proof. For any internal vertex i the disc around i is inside the faces incident to i. Also holds for j.

This proofs the claim.

This proofs the Koebe theorem.

Observation. Planar graphs are ⊆ 2-String graphs. (Every pair can intersect at most twice.)

Proof. Start by Koebe theorem and draw discs, then draw the outlines of the discs, which is enough for 2-String.
Alternatively start by plane drawing and mark midpoints in the edges and again draw the outlines.

Also we have some other results for planar graphs, mostly these will be only stated by us and proven.

Theorem 88 (ex-Conjecture – Schcinernann, 1984). Planar ⊆ Seg.

Theorem 89 (Chalopin, Gongalves, Ochem, 2009). Planar ⊆ 1-String.

Theorem 90 (Chalopin, Gongalves, 2010). Planar ⊆ Seg.

Theorem 91 (Gongalves,Isenmann, Pennarun, 2018). Planar ⊆ L-graphs.

Theorem 92. G is an outer planar graph if and only if G has a contact representation of L-shapes, where the
corners of all the L-shapes touch the line ”y = −x”.

Proof. ”⇐” We have the given representation. To obtain planar drawing we set the vertices to be the meeting
points with the line y = −x. The edges will be drawn so that they will follow the L-shapes.

”⇒” WLOG G is maximal outer planar: ∃ numbering of vertices s.t. 1, 2 is an edge on the outer face.
∀i > 2 : is adjacent to exactly two vertices in {1, 2, . . . , i− 1}, the two vertices form an edge on the outer face
of the subgraph induced by 1, 2, . . . , i− 1. 1 will be the first, 2 the last L-shape which will touch. Every other
vertex will be drawn in the middle of the two before them and draw the L-shape so they touch.
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Chapter 15

Separators theorems

Definition 56. G = (V,E) graph, α ∈ (0, 1) an α-separator of G is a set S ⊆ V s.t. every connected component
of G− S has size ≤ α · |V |.

Theorem 93. Planar graphs on n vertices have 2/3 separators of size O(
√
n).

Note that this is best possible, take
√
n×

√
n grid.

Proof only for 9/10-separator. Fix a contact disc representation for a graph G = (V,E), V = {1, 2, . . . , n},
vertex i is represented by a disc of radius ri centered in ci. Fix a disc D of smallest possible radius containing
at least 1/10n of the points c1, . . . , cn. WLOG D has radius 1 and is centered in the origin (this is done
by scaling and translating). For x ∈ [1, 2], Cx := circle of radius x centered in the origin, Sx ⊆ V : Sx =
{i,disc representing i intersects Cx =: Pi}.

Claim 94 (1). For any x ∈ [1, 2] Sx is a 9/10 separator of G.

Proof of claim 1. Let V \ Sx = Vin∪̇Vout where Vin = {i,Di is inside Cx} and Vout = {i,Di is outside Cx}. See
that |Vout| ≤ 9/10n, because there are ≥ 1/10n vertices i ∈ V s.t. ci ∈ D. Also |Vin| ≤ 9/10n, because the
interior of Cx can be covered by 9 discs of radius < 1, so at most 9/10n vertices have centers inside Cx.

Claim 95 (2). ∃x ∈ [1, 2] : |Sx| ≤ O(
√
n).

Proof of claim 2. Let l := 1√
n
, Vbig := {i, ri ≥ l} and Vsmall := V \ Vbig. Also denote Ax := annulus of outer

radius x+ l, inner radius x− l. The area of Ax = π(x+ l)2 − π(x− l)2 = π((x+ l)2 − (x− l)2) = π(4xl).
For i ∈ Sx ∩ Vbig : the set Ax ∩Di contains a disc of radius l/2, hence the area of Ax ∩Di ≥ π(l/2)2. So

|Sx ∩ Vbig| ≤ π4xl
π(l/2)2 = O(1/l) = O(

√
n).

Choose x ∈ [1, 2] uniformly randomly, for any i ∈ Vsmall : Pr[Cx ∩ Di 6= ∅] ≤ 2l. And also we have that
E x∈[1,2][|Sx ∩ Vsmall] ≤ 2l · |Vsmall| ≤ 2ln = O(

√
n). So for some x ∈ [1, 2] : |Sx| ≤ O(

√
n).

By finishing this proof of claim we have also proven the theorem.

Theorem 96 (Lee, 2017). If G = (V,E) is a string graph, then G has a 2/3-separator of size O(
√
|E|).

Note that this is best we can have. Because also Kn is a string graph. We will be showing and proving something
bit different though. Before we do so we will show us a simple application.

Lets not so formally define what in this chapter will drawing of G = (V,E) mean. We will have several rules.

• No 3 edges cross in a single point.

• Any 2 edges have only finitely many points of intersection, each such point is a crossing or common
endpoint. Thus touching is not permitted.

• No edge passing through a vertex.

Definition 57. Crossing number of a drawing D is cr(D) := the number of crossings in D. Pair-crossing
number of a drawing D is pcr(D) := the number of pairs of edges that cross in D.

Observation. pcr(D) ≤ cr(D).

For a graph G we will define cr(G) := min{cr(D)|D drawing of G} and pcr(G) := min{pcr(D)|D drawing of G}.

Observation. pcr(G) ≤ cr(G).
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Figure 15.1: TODO

Figure 15.2: TODO

Lemma 15. If D is a drawing of G minimizing cr(D) then any two edges of G cross at most once in D. So
cr(D) = pcr(D).

Proof. We will show two examples and how they can be transformed.
So I have contradiction since we created drawing with less crossing.

But on the other hand it may happen that there exists D′ of G s.t. pcr(D′) < cr(G).

Conjecture 1. ∀G : cr(G) = pcr(G).

Theorem 97. pcr(G) ≤ cr(G) ≤ O(pcr(G)2).

Proof. Fix a drawing D of G minimizing pcr(D). Let E′ ⊆ E be the set of edges that have at least one crossing
in D. let l := |E′|, k := pcr(D) = pcr(G). Clearly l ≤ 2k, k ≤

(
l
2

)
. Apply transforms from Figures

[TODO] FIGURES

until we reach a drawing D′ in which any two edges cross at most once. Note that only edges in E′ can have
crossing in D. Also pcr(D′) ≥ pcr(D). But no more than E′ can cross.

cr(G) ≤ cr(D′) ≤
(
l

2

)
≤
(
2k

k

)
=

(
2pcr(G)

2

)
.

Theorem 98 (? – will not be shown). cr(G) ≤ O(pcr3/2(G)).

Theorem 99. cr(G) ≤ O(pcr3/2(G) · log(pcr(G))).

Lemma 16 (Blue-red crossing lemma). Let G be a graph whose edges are colored blue and red, let D be a
drawing of G. Then there is another drawing D′ of G with these properties:

1. The vertices are drawn in the same way in D and D′, the edges in D′ are drawn in a small neighbourhood
of the edges in D.

2. Any two edges in D′ cross at most once.

3. The number of blue-blue crossings in D′ ≤ the number of blue-blue crossing in D.

Idea of the proof. Perform ”local” transforms so that the triple (#BB-crossings, #BR-crossings, #RR-crossings)
decreases.

Tvrzení 17. Mějme nakreslení D grafu G, nechť k := pcr(D), l := počet hran, na nichž je aspoň jedno křížení
v D, potom existuje nakreslení D′ grafu G, v němž každá hrana je nakreselnéá v malém okolí hrany D a
cr(D′) ≤ A∼k3/2 · log(l), pro nějakou konstantu A∼.

Pro větu D je min pcr(D) takže k = pcr(G) a taky l ≤ 2k a k ≤
(
l
2

)
.

Proof. G = (V,E), nakreslení D dle předpokladu, E+ ⊆ E je množina hran v D, které mají aspoň jedno křížení.
To jest |E+| = l. H = (E+, F ), kde ∀e, e′ ∈ E+ : {e, e′} ∈ F ⇐⇒ e a e′ se kříží v D. Pozorování: H je string
graf a |F | = k.

Nyní použijme větu 96, která říká, že H má 2/3-separátor S velikosti ≤ C
√
k pro konstantu C. Nechť A,B

jsou disjunktní podgrafy H − S mezi nimiž nevede hrana a |A| ≤ 2/3l, |B| ≤ 2/3l. Nechť kA je počet dvojic
hran, které se kříží v A, lA je počet hran, které mají v A nějaké křížení. Podobně definujeme kB a lB . A A∪B
budou modré hrany G, S pak budou červené hrany.

Nyní použijeme indukci. A a B lze překlesit tak, že modro-modrých křížení bude ≤ A∼k3/2 log(l) −
A∼k3/2 log(3/2). Použijeme lemma 16: dá se překlesit tak, že počet modro-modrých křížení se nezvýší a
každé dvě hrany se budou křížit nejvýš jedenkrát. Tedy počet křížení s červenými hranami bude ≤ |S| · l ≤
C
√
kl ≤ 2Ck3/2 ≤ A∼k3/2 log(3/2) lze získat pro vhodné A∼.
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Proof of 96 by Matoušek to get O(
√
|E| log(|V |)). Budeme mít G = (V,E), n = |V |,m = |E|. Pro {u, v} ∈(

V
2

)
: Puv jsou cesty z u do v v G. P :=

⋃
u,v Puv. Potom (multi-komodintí) tok v G je funkce ϕ : P →

[0,+∞) t.ž. ∀{u, v} ∈
(
V
2

)
:
∑

P∈Puv
ϕ(P ) ≥ 1. Pro vrchol x ∈ V a cestu P ∈ P definujeme

w(P, x) :=

 0 x ∈ P
1/2 x je koncový
1 x je vnitřní

.

Zacpanost (congestion) vrcholu x v toku ϕ je cong(x, ϕ) :=
∑

P∈P ϕ(P )w(P, x). Zacpanost toku ϕ je
cong(ϕ) = maxx∈V cong(x, ϕ). Zacpanost grafu G je cong(G) := minϕ cong(ϕ).

Řez v G je trojice (S,A,B), kde V = S∪̇A∪̇B, žádná hrana nevede mezi A a B. A 6= ∅ a B 6= ∅. ŘÍdkost
(sparsity) řezu je spars(S,A,B) := |S|

|S∪A|·|S∪B| . Potom spars(G) := min(S,A,B) spars(S,A,B).
Plán důkazu je následující:

1. G ∈ String ⇒ cong(G) = Ω( n2
√
m
).

2. O(spars(G)/ log n) ≤ 1/cong(G) ≤ O(spars(G)).

3. Každý podgraf G velikosti ≥ 2/3n má spars ≤ α(n) ⇒ G má 2/3 separátor velikost ≤ n2α(n).

Fact. cr(Kn) = Ω(n4).

Mějme G ∈ String, tok ϕ, který minimalizuje cong(ϕ). Mějme stringovou reprezentaci G, vyrobíme
nakreselní Kn takto: na každý ”string” G umístíme 1 vrchol. Pro {u, v} ∈

(
V
2

)
volme cestu P ∈ Puv s

pravděpodobností danou rozdělením ϕ. Nakreslím hranu u → v ”blízko” křivek reprezentujících. E [pcr] tohoto
nakreslení Kn je shora odhadnutelná pomocí cong(ϕ) = cong(G).

[TODO] Tohle nebylo dodělané ani na přednášce.
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