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Chapter 1

Definitions

Reader may already know some basic definitions of polyhedrons and polytopes and also might be familiar with
some basic theorems and characterization. But in the other case we will introduce some of these basics one
more time. Also note that the main part is that we are considering somewhat basic linear program.

max cTx

Ax ≤ b

Where we are considering a finite number of linear inequalities.

1.1 Polyhedra and Polytopes
The polyhedron created by such linear program is usually called H-polyhedron. But we will formulate it more
precisely.

Definition 1. H-polyhedron is prescribed as {x|Ax ≤ b} where A ∈ Rm×n and b ∈ Rn.

Definition 2 (Minkowski sum). Minkowski sum of two sets A,B denoted by A+M B is {a+ b|a ∈ A, b ∈ B}.

Definition 3 (Combinations). Let V be a finite set, then by the following statements

1. x =
∑

vi∈V λivi, λi ∈ R

2. 1 =
∑

vi∈V λi

3. 0 ≤ λi

we will define:

• Linear combination lin(V ) as 1.

• Affine combination aff(V ) as 1. and 2.

• Conic combination cone(V ) as 1. and 3.

• Convex combination conv(V ) as 1., 2. and 3.

Figure 1.1: Example of combinations, where V are two points in R2, then we have their linear combination,
affine combination, conic combination and convex combination.
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Definition 4. V-polyhedron is defined as conv(V ) +M cone(Y ) where V, Y are finite set of points.

Definition 5. Bounded-polyhedron is called polytope.

This can be either visualized just by the definition or consider having a n-dimensional ball which is being
cut by hyperplanes until no surface obtained by the ball itself persists.

1.1.1 Examples of polytopes
Simplex

This is a well known polytope which can be prescribed as follows. k-simplex is a convex combination of k + 1
affine independent vertices.

Cube

Cube is even more known than the simplex. Already here we can see that it can be prescribed as H-polytope
{x ∈ Rk|0 ≤ xi ≤ 1}, but also as V-polytope conv({0, 1}k). This is quite essential, because we will see that
H-polyhedra and V-polyhedra are equal.

(a) 3 dimensional simplex (b) 3 dimensional cube

Pyramids and other creations

Also we will show us a simple way how to create new polytopes. That is imagine we have a polytope P and put
it in a higher dimension, then by adding one point above the P and creating a convex hull of P and the point
we obtain a so called pyramid. We may also denote it as pyr(P ). Similarly if we would take two points, where
one is above and the second one is below the given P we get bipyramid or bipyr(P ).

Last creation we will show us right now is if we would take a parallel copy of the polytope P , that is to some
other parallel hyperplane and connect these two together. This way we obtain a prism.

(a) Pyramid (b) Bipyramid (c) Prism

Theorem 1 (Minkowski-Weyl). P is H-polyhedron ⇐⇒ it is a V-polyhedron.

Sketch of the proof. ”⇒” We will gradually make the polyhedron more non-general and then consider a simple
case. So WLOG:

1. P is full-dimensional. Where dimension is defined as dimension of the smallest affine space containing it.

2. P is pointed, that is it does not contain a line. – If it contains a line we can split it by an orthogonal
hyperplane, inductively use Minkowski-Weyl theorem and then extend Y by rays to both sides of the
hyperplane. Use theorem 2.
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3. V = ∅ – Use trick which is called Homogenization or Homogenized cone which is that P : Ax ≤ b
create P ′ : Ax − bz ≤ 0 and z ≥ 0. So for z = 1 we have original P and then for all others z we have
scaled copy of P . After this trick we use Minkowski-Weyl for this cone and create V by the points for
which z > 0 and Y from points for which z = 0.

4. P is a polytope. And with that we use claim 3.

”⇐” Set P = {x|x =
∑

λixi, 1 =
∑

λi, 0 ≤ λi} which is a H-polytope. By also using Fourier Monskin split
to positive, 0 and negative coefficients.

Theorem 2. P is a pointed ⇐⇒ it has an extreme point.

Proof. If there is a line and we have extreme point we can shift the line so it goes through the extreme point.
But now the line representing the optimization function is either parallel hence it is not an extreme point or
not parallel which also implies it is not an extreme point.

Claim 3. Lets have polytope P = {x|Ax ≤ b} and V be the set of extreme point of P . Then P = conv(V ).

Proof. ”P ⊇ conv(V )” Is easy. So see ”P ⊆ conv(V )”. Suppose it is not true. Take any such x and find a
hyperplane separating conv(V ) and x which can be done by Hyperplane separation lemma (that is choosing
shortest segment and creating an orthogonal hyperplane between them). Then the optimum of the direction
set by the norm of this hyperplane gives an extreme point, which is a contradiction.

From the main theorem we may see that from mathematical perspective both H-polyhedrons and V-
polyhedrons are the same. But for computer scientists it is pretty much the opposite. Consider solving an
LP. Given linear inequalities it takes some time to solve it, but if we have all vertices we can just check every
one of them if it is optimum. Also if we would like to see an intersection of two polytopes P,Q it is the opposite.
That is we can just add all inequalities together and obtain their intersection. On the other hand for convex
points it is known to be NP hard.

Fact. For polytope P ⊆ Rd given by n inequalities it has ≤ nbd/2c vertices.

1.2 Faces of polytopes (polyhedrons)
Definition 6. Let P be a polyhedron. An inequality αTx ≤ β is valid for P if P ∩ {x|αTx ≤ β} = P .

Definition 7. Let P be a polyhedron and αTx ≤ β a valid inequality. Then F = P ∩ {x|αTx = β} is called a
face of P .

Keep in mind that there are two special cases that are usualy called trivial faces. Consider 0Tx ≤ 0 and
0Tx ≤ 1 which are valid and the first create a face P , whereas the second ∅. The other faces are called
non-trivial.

Theorem 4. Let P be a polytope Ax ≤ b then F is a face of P if and only if F = {x|A′x = b′} ∩ P for some
subset of ”original inequalities”. Or sometimes called a subsystem.

Proof. ”⇒” Let F be a face of P . Then ∃ valid cTx ≤ δ such that F = P ∩ {x|cTx = δ}. In the dual LP for
max cTx s.t. Ax ≤ b let y∗ be optimum and let I = {i|yi = 0}. Then F ⊆ P ∩ {x|aTi x = b, i ∈ I} can be seen
from the fact about complementarity 1.2. But also the other inclusion holds thus F = P ∩ {x|aTi x = b, i ∈ I}.

”⇐” Let F = P ∩{x|aTi x = b}. Then claim F is a face can be seen by setting c :=
∑

i∈I ai and δ :=
∑

i∈I bi.
See that cTx ≤ δ is valid and it prescribe a face.

Fact (Complementarity). For LP max cTx s.t. Ax ≤ b and its dual min bT y s.t. AT y = c, y ≥ 0. Let x∗ and
y∗ be primal (dual) optimum solutions, then if y∗i > 0 then aTi x

∗ = bi.

Proof. cTx = yTAx = yT b therefore yT (Ax+ b) = 0 so component wise it must be 0 ∀i, hence either yi = 0 or
(aix− bi) = 0.

Also faces of polyhedron are also polyhdra as well. Face of a face is also a face and intersection of faces is a
face. These are some properties which can be observed. Lastly we may look at special faces by their dimensions
which are prescribed in table 1.1.
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dimension face
0 vertices
1 edges
...

...
dim(P )− 2 ridges
dim(P )− 1 facets

Table 1.1: Most important faces.

ab

c d

{a, b, c, d}

{b, c} {c, d} {a, d}{a, b}

{a} {b} {c} {d}

∅

Figure 1.4: Example of face lattice for the given 2-dimensional cube.

1.2.1 Face lettice
Let F be the set of faces of P , then (F ,⊆) is called the face lattice. The fact that it is called lattice is due to
the properties it has. Moreover it has some other properties, which are sometimes called as a graded lattice
(elements can be dividided by their grades). Also for all pairs it has its sublattice.
Example. See an easy example of 2-dimensional cube and its lattice on Fig. 1.4.

1.2.2 Polar duality
For a polytope P which is described as Ax ≤ 1 and also by conv(V ) we have the polar dual polytope P∆

prescribed as V x ≤ 1 which is same as conv(A). Also its dual is the original P , i.e. (P∆)∆ = P . Note that any
Ax ≤ b can be changed to Ax ≤ 1.

The polar duals have some interesting properties. For example a correspondence between vertice of P and
facets of P∆, edges of P and ridges of P∆, ridges of P and edges od P∆ and facets of P and vertices od P∆.
Also face lattice of P∆ is same as for P only ”upside down”. Lastly the polar duality can be even further
generalized.

Ax ≤ 1 V x ≤ 1
Bx ≤ 0 ↔ Y x ≤ 0

conv(V ) + cone(Y ) conv(A ∪ {0}) + cone(B)

One of the interesting questions may be if we have two polytopes P, P ′ and we want to know if they are the
same. But how they are same? Well there are mainly two ways how to define sameness. In one way by affine
operations (which may include some transitions, rotations and scaling) or the other way is to define sameness
in a combinatrial way. That is if lattices are equal.

1.3 1-skeleton of polytope
Definition 8. 1-skeleton of polytope is a graph G = (V,E) such that V = F0, which are 0-dimensional faces
(vertices) and E = F1, which are 1-dimensional faces (edges). This can be generalized to k-skeleton of polytope
by setting V = Fk−1 and E = Fk.

Theorem 5 (Steinitz). Planar 3-connected graphs are exactly 1-skeletons of 3-dimensional polytopes.

There are also present some conjectures. First is that this is not true only for 3-connected planar graphs
but generally for d-connected graphs and d-dimensional polytopes. Another conjecture is that 1-skeletons are
somewhat nice expanders.
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Lecture 10

Extended Formulation

Suppose we are given a description of a H-polyhedron given as an In many cases,
the number of equations that define the polyhedron plays a role, for example when
optimizing over it (using some optimization method). Therefore, for a given polyhedron
it is desireable to find as small a description as possible.

We might ask ourselves: is it possible (by some clever trick on our part) to reduce
the number of equations necessary, perhaps by increasing the number of dimensions
(number of variables)?

This leads to the notion of extended formulation.

Definition 1 (Extended Formulation). Let P ⊆ Rd be a polytope. Then polytope
Q ⊆ Rd+r is called an extended formulation of P if

P = {x ∈ Rd | (∃y ∈ Rr) (x, y) ∈ Q}.

In other words, if we project Q to the original variables we get the original polytope P .

Denote
∏

xQ the projection of Q to variables/coordinates x.

The motivation by optimization problems is justified by the following theorem.

Theorem 1 (Extended Formulation Preserves Optima).

Q is an extended formulation of P

⇐⇒
max cTx
x ∈ P

≡ max cTx
(x, y) ∈ Q

Proof. We prove two implications.

(⇒) Immediate as we optimize over the same space.

(⇐) For contradiction, suppose that P ̸=
∏

xQ. Then, there exists a point x not
common to both P and

∏
xQ. Without loss of generality, let x ∈ P \ πxQ.

Take the separating hyperplane h defined by a vector c separating x from πxQ.
Optimizing in the direction of c, we get different answers. See Figure 1.

Observation: The difference between the number of inequalities of P and those of its
extended formulation can be drastic. As an example, consider an n-gon which can be
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Figure 1: Difference in optimal value when optimizing along the direction perpendic-
ular to the separating hyperplane.

defined using n inequalities. Its extended formulation is a log(n)-cube which can be
described using just 2 log(n)-inequalities.

Firstly, observe that some problems regarding V- and H-polytopes are easy. If we are
given an LP oracle then easy problems for V-polytopes are the problems

• computing a non-redundant representation of conv(P ∪Q)

Simply take all vertices and remove the redundant ones. Notice that deciding
whether a vertex is redundant is easy.

Suppose v1, v2, . . . , vn are points. Fix one index j ∈ [n]. Then we can check the
redundancy by checking the feasibility of the following system.∑

i ̸=j

λivi = vj∑
i ̸=j

λi = 1

λj = 0

λ ≥ 0

• computing a non-redundant representation of P +Q (analogously)

and for H-polytopes

• computing a non-redundant representation of P ∩Q

To check redundancy of hyperplane optimize in direction of the hyperplane and
compare the output after removing it.

A natural step is to ask what is the complexity of the complementary problems, i.e.
conv(P ∪Q) and P +Q for H-polytopes, and P ∩Q for V-polytopes.

Question: How difficult is it to check that a polytope is an extended formulation of
other polytope?
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Problem 1 (Extended Formulation). Let P and Q be H-polytopes. Check

P
?
=

∏
x

Q.

We will sketch that deciding Extended Formulation is NP-hard.

One might wonder, whether we could just enumerate all the vertices of the given
polyhedra reduce the problem to an easy one.

Problem 2 (Vertex Enumerate). Given H-polyhedron P and set of points V ,

is vert(P )
?
= V ?

However, it was shown by Khachiyan that it is coNP-Hard to enumerate all vertices
of a polyhedron given by its facets.

We will reduce the problem to the following one

Problem 3 (Minkowski Verify). Given H-polyhedra P1, P2, S. Is S = P1 +P2?

We claim the following

Theorem 2. Problem Minkowski Verify is NP-hard.

We now show, that by proving this we also prove the hardness of the extended formu-
lation problem.

Claim 1. Extended Formulation is NP-hard if Minkowski Verify is NP-hard.

Proof. Suppose

P1 ≡ A1x ≤ b1,

P2 ≡ A2x ≤ b2.

Notice that the Minkowski sum of P1, P2 can be expressed as a projection of a suitable
polyhedron as

P1 + P2 =
∏
z



A1x ≤ b1
A2y ≤ b2
z = x+ y

︸ ︷︷ ︸
Q

 .

Then by checking S =
∏

z Q we solve the original problem.

Proof of Theorem 2.

We prove that if we have an algorithm for deciding Minkowski Verify for two arbitrary
polytopes, then we can invoke the oracle polynomial number of times and decide for
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some set of vertices V and an H-polytope P , whether V = vert(P ). The hardness
then comes from the hardnes of Problem 2.

WLOG assume for polyhedron P ⊆ Rd

• P has a ”up” direction and suppose this is along the xd axis (see Figure 2 below)

• all vertices are at a different height

Now, consider the vertices vi of V in the order of their xd-coordinate (in the order of
increasing height). Now, consider some vi and vi+1 and define three polytopes in the
following way:

P−1 = P ∩ {xd = eTd vi}
P1 = P ∩ {xd = eTd vi+1}

P0 = P ∩
{
xd =

eTd vi + eTd vi+1

2

}
where the dot product eTd vi is just the xd-coordinate of v. See Figure 2 for illustration.

The crucial observation here is that P0 is actually equal to 1
2P−1 + P1 (this is called

the Cayley trick).

Figure 2: Polyhedron P oriented along the xd dimension and cuts represented by
polyhedra P−1, P0, P1

To finish the proof we need to prove the following lemma (this is just copied from the
paper, follow the proof along the Figure 3 and it is quite straightforward actually)
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Lemma 1. 2P0 ̸= P−1+P1 if and only if there exists some v ∈ vert(P ) that is not in
V and eTd vi < eTd v < eTd vi+1

Proof. We prove the non-trivial direction only. Suppose some vertex v ∈ vert(P ) is
not in V and eTd vi < eTd v < eTd vi+1 for some i. WLOG we can assume that v lies above
the hyperplane containing P0. If so, there is an u ∈ vert(P−1) such that −→uv lies on
some edge of P . Clearly, −→uv intersects P0, say at w. We claim that 2w /∈ P−1 + P1.

Assume for the sake of contradiction that 2w ∈ P−1 + P1. Then there are x ∈ P−1

and y ∈ P1 such that 2w = x + y. Since, any point on an edge of a polytope can be
uniquely represented as the convex combination of the vertices defining the edge, it
follows that x = u and y is a vertex of P1. This implies that v is a convex combination
of x, y as well and hence, v can not be a vertex of P , a contradiction.

Figure 3: Situation in lemma

Now, this lemma gives us a way to use the Minkowski Verify problem to decide whether
some vertex between vi and vi+1 is missing. And thus if we can decide Minkowski Verify
in poly time, we can also decide Vertex Enumerate, a contradiction.
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Polyhedral combinatorics – Lecture 11

Filip Kastl

June 8, 2024

version 2 – June 8, 2024

1 Non-negative rank (propositions from the tutorial)

Definition (Non-negative rank). The non-negative rank rk+(M) for Mm×n ≥ 0 is defined as

rk+(M) = min{r | ∃Tm×r ≥ 0, Ur×n ≥ 0 s.t. M = TU}

Proposition. rk+(M) is equal to the minimum number of rank-1 non-negative matrices that sum
to M .

Observation.

• The non-negative rank of a matrix is at least as large as its rank

• The non-negative rank of a matrix is at most as large as the minimum number of rows and
columns of the matrix.

• The non-negative rank of a matrix is equal to the non-negative rank of its transpose.

Proposition. The non-negative rank of the product of two matrices A and B is at most as large
as the minimum of the non-negative rank of A and the non-negative rank of B.

Proposition. The non-negative rank of the sum of two matrices A and B is at most as large as
the sum of the non-negative rank of A and the non-negative rank of B.

2 Yannakakis theorem

Say we have a problem of size n. We search for a polyhedron representing the problem and its
description using linear equalities and inequalities. We might end up with exponentially many
inequalities 1 We might search for other descriptions of the polyhedron in Rd with polynomially
many inequalities. If that doesn’t work out, another approach is to search for polyhedrons of higher
dimension whose projection to Rd is equivalent to the original polyhedron.

1I’d like to stress that we only count the number of inequalities. The equalities don’t bother us since we can use
linear algebra tools to efficiently solve for the affine space they represent and move into that space. Then we are only
left with inequalities.
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Definition (Extended formulation). Let P ⊆ Rd, P = {x| . . .} and Q ⊆ Rd+r, Q = {(x, y)| . . .} be
polytopes.

Q is an extended formulation of P if P = Πx(Q) := {x|∃y : (x, y) ∈ Q}

Definition (Extension complexity). The extension complexity xc(P ) = min number of inequalities
describing any extended formulation of P .

Definition (Slack matrix). Let P = {x|Am×dx ≤ b} = conv(Vn×d).
The non-negative slack matrix S(P ) is an m× n matrix s.t.

Sij = bi − aTi vj

The following theorem is important because it enables us to go from bounds on the non-negative
rank to bounds on xc.

Theorem (Yannakakis). Let P be a polytope. Then xc(P ) = rk+(S(P )).

Proof.
reference: Mihalis Yannakakis: Expressing Combinatorial Optimization Problems by Linear

Programs, Theorem 3
“≤”

Let’s show that for a given slack matrix S(P ) of non-negative rank r we can construct an ex-
tended formulation Q of the polytope P . Let P = {x|Am×nx ≤ b} (WLOG there are no equalities).
Let S(P ) = Tm×rUr×n be a non-negative factorization of the slack matrix S(P ). We define the
extended formulation as follows

Q := {(x, y)|Ax+ Ty = b, y ≥ 0}

So Q only has r inequalities (y ≥ 0).
Now let’s show that Q is really an extended formulation of P – show that Πx(Q) = P .
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• “⊆” Let x, y ∈ Q. By definition of Q it holds that Ax + Ty = b. Because T is non-negative
it holds that Ty ≥ 0. That means that Ax ≤ b which by definition means that x ∈ P .

• “⊇” Let’s show that for each vertex vi of P exists y s.t. (vi, y) ∈ Q. This will suffice
since points of P are convex combinations of vertices and those will then translate to convex
combinations of points of Q.

Let’s use y := U∗i. For each i, (vi, U∗i) is a feasible solution of Ax + Ty = b, y ≥ 0 because
TU∗i = S∗i, which is exactly the slack of vertex vi.

“≥”
Let P = {x|Ax ≤ b} = conv(V ) and let Q = {(x, y)|Ex+ Fy ≤ g} be its extended formulation

with r inequalities. Note that ∀i : aTi x ≤ bi is a valid inequality for Q. For each of these inequalities
it should be possible to express them as non-negative linear combinations of the inequalities of Q
2. Let’s denote the coefficients of these linear combinations as λi

1, ..., λ
i
r, λ

i
k ≥ 0.

(ai, 0) =
∑
k

λi
k(Ek∗, Fk∗)

bi =
∑
k

λi
kgk

Notice that for a vertex v of P there is a point (v, u) of Q s.t. the inequality aix ≤ bi has the
same slack w.r.t. v and (v, u). In the lecture we assumed that (v, u) is a vertex of Q. Let me
give an explanation of why we can assume this. We can observe that (v, u) lies on a facet – v is
an extreme point of P w.r.t. some direction and optimizing along this direction gives us a facet of
Q. All of the points of the facet will have the form (v, y) for some y. This facet will contain some
vertices of Q. Let (v, u) be one of these vertices. Let’s now continue with the proof.

Slack of the inequality of P aTi x ≤ bi with respect to vertex vj of P is the same as the slack of
the inequality aTi x ≤ bi that we constructed from inequalities of Q w.r.t. a vertex (vj , uj) of Q and
that can be expressed as the slack of

∑r
k=1 λ

i
k · (Eix + Fiy ≤ gi) w.r.t. (vj , uj). Since when you

combine inequalities you also combine slack, we finaly get this:
∑r

k=1 λ
i
k · ( slack of Eix+ Fiy ≤ gi

w.r.t. (vj , uj)).
Now let’s define the non-negative matrices that form the rank r factorization of S(P ). One of

them will be Λ whose rows are the coefficient vectors λi. The second will be submatrix S of the
slack matrix of Q consisting of those columns of Q corresponding to vertices (vj , uj). Both matrices
are non-negative, have the right number of rows and columns and due to what we have shown in
the previous paragraph, ΛS = S(P ).

In particular, this means that all possible slack matrices of P will have the same non-negative
rank.

3 Communication complexity

We now sidestep into the theory of communication complexity. We will show that a specific type of
a communication complexity problem can be used to bound the non-negative rank of matrix. That

2This intuitively makes sense to me but I wouldn’t be able to prove it. In the lecture this was handwaved as a
consequence of duality.
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will in turn be useful for us when we try to bound the extension complexity of some combinatorial
problems.

Communication complexity scenario. Let Mm×n be a non-negative matrix. There are two
parties: Alice and Bob. Alice gets a row index i and Bob gets a column index j. They communicate
and then one of them outputs a number Xij . Their task is to match Mij .

We count the number of bits exchanged. For a given matrix M the communication complexity
of a communication protocol is the maximum number of bits exchanged over all i, j. The commu-
nication complexity of the matrix M (cc(M)) is the minimum number of bits exchanged over all
possible communication protocols.

We will concern ourselves with a variant of this problem where the communication protocol can
make decisions base on chance, Xij is a random variable and the goal is E[Xij ] = Mij ∀i, j. We
will denote the communication complexity of this problem as cc+(M).

Definition (Communication protocol (formally)). A communication protocol is a binary tree with
internal nodes labeled Alice/Bob. The leaves represent output. The left downwards edge represents
sending the other party a 0 bit, the right downwards edge represents sending the other party a 1 bit.

For the probabilistic version of the problem each internal node labeled Alice has a probability
p(i) ∈ [0, 1] of sending the 0 bit dependent on the row index i asociated with it and each internal
node labeled Bob has a probability p(j) ∈ [0, 1] of sending the 0 bit dependent on the column index
j asociated with it.

Theorem. log(rk+(M)) ∼ cc+(M)

We leave this theorem without a proof for now. The proof will be presented in the next lecture.
Instead, we present an example of usage of this theorem.

4 The spanning tree polytope

Let G = (V,E) be a graph. We call the polytope PST (G) = {χE′ ∈ {0, 1}|E||E′ is a spanning tree
of G} the spanning tree polytope of G. Here is a description of the polytope using linear inequalities:

∑
e∈E xe = n− 1

x xe ≥ 0 ∀e ∈ E∑
e∈E[U ] ≤ |U | − 1 ∀U ⊆ V


The third system of inequalities basically says that each subset of vertices should induce a forest

in the spanning tree E′.
How does the slack matrix of this polytope look like? It has one column for each possible span-

ning tree of G. The rows of the slack matrix corresponding to the first two systems of inequalities
are trivial. For the first system we get all zeros. For the second system we get a row for each edge e
where positions represent whether e is contained in the spanning tree corresponding to the column.

The part of the matrix corresponding to the third set of inequalities is more interesting. Rows
correspond to subsets U ⊆ V . Here is a formula for elements of this part of the matrix:

S(U, T ) =

|U | − 1−
∑

e∈E[U ]

[e ∈ T ]

− 1

This can be interpreted as (# components in T [U ])− 1.
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4.1 Communication protocol

reference: “basics” paper, section 5.2
Let’s bound the extension complexity of the spanning tree polytope by constructing a communica-
tion protocol for its slack matrix.

Let G = (V,E) be a graph. PST (G) is its spanning tree polytope. In terms of the corresponding
communication problem, Alice has a proper nonempty set U ⊊ V and Bob a spanning tree T .
Together, they wish to compute S(U, T ).

Alice sends the name of some (arbitralily chosen) vertex u of U . Then Bob picks an edge e of T
uniformly at random and sends to Alice the endpoints v and w of e as an ordered pair of vertices
(v, w), where the order is chosen in such a way that w is on the unique path from v to u in the
tree. That is, she makes sure that the directed edge (v, w) “points” towards the root u. Then Alice
checks that v ∈ U and w /∈ U , in which case she outputs n− 1; otherwise she outputs 0.

The resulting randomized protocol is clearly of complexity log |V |+log |E|+O(1). Moreover, it
computes the slack matrix in expectation because for each connected component of T [U ] distinct
from that which contains u, there is exactly one directed edge (v, w) that will lead Alice to output
a non-zero value. Since she outputs (n− 1) in this case, the expected value of the protocol on pair
(U, T ) is (n− 1) · (k− 1)/(n− 1) = k− 1, where k is the number of connected components of T [U ].
Therefore we obtain the following result.

Proposition. For every graph G with n vertices and m edges, xc(PST (G)) ∈ O(mn)
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Polyhedral combinatorics – Lecture 12

Cyril Kotecký

14 June, 2024

version 1 - June 16, 2024

Definition: Randomized protocol

• A,B finite sets assigned to Alice and Bob respectively

A randomized protocol is a rooted binary tree such that:

1. Each node of the tree has type A or B

2. Each node v of type A has functions p0,v, p1,v : A → [0, 1] such that p0,v(i) + p1,v(i) ≤ 1.

3. Each node v of type B has functions q0,v, q1,v : B → [0, 1] such that q0,v(j) + q1,v(j) ≤ 1.

4. Each leaf v of type A has a nonnegative vector Λv of size |A|.
5. Each leaf v of type B has a nonnegative vector Λv of size |B|.
• Nowhere is it mentioned that vertices of type A have vertices of type B as children and vice versa, but
this seems implicit from the context.

An execution of the protocol on input (i, j) ∈ A×B is a random path from the root.

• It descends to the left child of an internal node v with probability

{
p0,v(i) v is of type A
q0,v(j) v is of type B

and to

its right child with probability

{
p1,v(i) v is of type A
q1,v(j) v is of type B

.

• The execution stops at v with probability

{
1− p0,v(i)− p1,v(j) v is of type A
1− q0,v(i)− q1,v(j) v is of type B

.

• If an execution stops at a node v, the value of the execution is

 0 v is an internal node
Λv(i) v is a leaf of type A
Λv(j) v is a leaf of type B

.

• For a fixed input (i, j) ∈ A×B, the value of the execution is a random variable.

• Transitioning from a node A to the left or right child corresponds to Alice sending 0 or 1 respectively,
and symmetrically for B.

The communication complexity of the protocol is the maximum number of bits exchanged over all (i, j),
or equivalently, the height of the tree.

Problem: Computing a matrix in expectation

• For a given matrix M and a protocol outputting X, the goal is to get E[Xi,j ] = Mi,j for all entries.

• The communication complexity cc+(M) of the protocol is the maximum number of bits exchanged.

Theorem:

⌈log rk+(M)⌉ = cc+(M)

Proof.

≤ – Assume we have a protocol computing X with E[Xxy] = Mxy with complexity c.

– Each node v of the protocol has a corresponding traversal probability matrix Pv ∈ RA×B
+ with

∀(x, y) ∈ A × B : Pv(x, y) = P [execution on input (x, y) goes through v]. Let v1, ..., vk be the
nodes of type A on the unique path P from the root r to the parent of v. Let w1, ..., wl be the
nodes of type Y on this path. Then
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Pv(x, y) =
∏

i∈[k]

pαi,vi
(x)

∏
j∈[l]

qβj ,wj
(y),

where αi =

{
1 path goes into right subtree of vi
0 path goes into left subtree of vi

and similarly for βj . Hence Pv is a rank

one matrix of the form avbv for av column vector of size |A| and bv row vector of size |B|.
– Let LX , LY be the sets of leaves of types A and B respectively. Let Λv denote the vector of values

at a leaf v ∈ LX ∪ LY . Since the protocol computes E[Xxy] = Mxy, we have

M(x, y) =
∑

v∈LX

Λv(x)Pv(x, y) +
∑

w∈Ly

Pw(x, y)Λw(y).

Thus

M =
∑

v∈LX

(Λv ◦ av)bv +
∑

w∈LY

aw(bw ◦ Λw)

where ◦ denotes the hadamard (element-wise) product. Hence we can express M as a sum of at
most |LX ∪ LY | ≤ 2c nonnegative rank one matrices and therefore rank+(M) ≤ 2c.

≥ – Denote r := rk+(M) and let A ∈ Rm×r
+ , B ∈ Rr×n

+ be such that M = AB. WLOG we can assume
that the maximum row sum of A is 1, as we can rescale B appropriately.

– Alice knows a row index i and Bob knows a column index j. Together, they want to compute
E[Xij ] = Mij by exchanging as few bits as possible.

1. Alice selects a column index k ∈ [r] according to the probabilities in row i of A. She sends this
index to Bob.

2. Bob outputs entry of Bkj .

– With probability 1 − δi, where δi :=
∑
k

Aik ≤ 1, Alice does not send any index to Bob and the

computation stops with implicit output zero.

– This randomized protocol computes X with E[Xij ] = Mij , since for the input (i, j), the expected
value is

∑
k∈[r]

AikBkj = Mij . Moreover, the complexity of the protocol is precisely ⌈log r⌉.

Corollary:

• P ̸= ∅ polytope that is not a point

• S its associated slack matrix

⌈log xc(P )⌉ = cc+(S)

Proof.

• Follows from the previous theorem and Yannakis’ theorem.

1 Perfect matching polytope

Definition: Perfect matching polytope

PPM := conv{χE′ | E′ ⊆ E perfect matching}

= {x ∈ R|E|| ∀v ∈ V :
∑
v∈e

xe = 1, xe ≥ 0, ∀U ∈ V, |U | odd:
∑

e∈δ(U)

xe ≥ 1}

or {x ∈ R|E|| ∀v ∈ V :
∑
v∈e

xe = 1, xe ≥ 0} for bipartite graphs.

Note: Perfect matching polytope

• Complexity is exponential.

• Looking at a vertex and its neighbors, we have a polyhedral cone called the vertex figure.

• Vertex figures of perfect matching polytope have small extension complexity.
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1 Cut and correlation polytopes

Definition 1.1. A polytope P ⊆ Rn is the convex hull of a finite set of points in Rn. It can also
be viewed as a bounded set defined by a finite number of linear constraints (halfspaces in R).

P = conv({v1, v2, . . . , vk})

P = {x ∈ Rn|Ax ≤ b for A ∈ Rr×n, b ∈ Rr}

Remark. The number of vertices defining a polytope may be exponential in the number of
halfspaces. Consider the hypercube Hd in Rd which needs d inequalities 0 ≤ xi ≤ 1, but 2d

vertices (Hd = conv({0, 1}d)).

Definition 1.2. For graph G = (V,E) and cut E′ ⊆ E define its incidence vector χE
′

of size
|E| as

χE
′

e =

{
1 e ∈ E′

0 e /∈ E′

and define the cut polytope as

CUT(G) := conv{χE
′
| E′ ⊆ E is an edge cut}.

If G is the complete graph Kn, we simply denote CUT(Kn) by CUTn.

Definition 1.3. We define the correlation polytope as

CORR(n) = conv{bbT | b ∈ {0, 1}n}

The polytope lies in Rn2

. The feasible point of this polytope is a matrix x ∈ Rn×n.

2 Extension complexity and rectangle covering bound

Definition 2.1. The extension complexity of a polytope P , denoted by xc(P ), is the smallest
number of facets of polytope Q ⊆ Rm such that P is a projection of Q.

Alternatively, the extension complexity, xc(P ), is the minimum number of inequalities re-
quired to describe Q, even when allowed to use auxiliary variables or extended formulations.

Definition 2.2. Let P be a polytope as defined in Definition 1.1. Then S ∈ Rr×k defined as
Sij := bi −Aivj is the slack matrix of P w.r.t. Ax ≤ b and V .

1



Definition 2.3. We define the support matrix supp(S) for the slack matrix S as

supp(S)i,j =

{
1 Si,j 6= 0

0 Si,j = 0

Definition 2.4. A rectangle is the cartesian product of a set of row indices and a set of column
indices. The rectangle covering bound is the minimum number of rectangles needed to cover all
the 1-entries of supp(S).

Definition 2.5. Monochromatic 1-rectangle is a rectangle, which has all elements ones.

Theorem 2.1 (Yannakakis). Let M be any matrix with nonnegative real entries and supp(M)
its support matrix. Then rk+(M) ≥ rectangle covering bound for supp(M).

Theorem 2.2 (Yannakakis from the Lecture 11). For polytope P and its slack matrix S it holds

xc(P ) = rk+(S).

3 CORRn−1 u CUTn

Lemma 3.1. For all a ∈ {0, 1}n, the inequality〈
2diag(a)− aaT , x

〉
≤ 1

is valid for x ∈ CORRn.

Proof. We can show the inequality is satisfied for vertices x = bbT and by convexity, it is satisfied
for every point of CORRn. The inequality can be rewritten as

(1− aT b)2 ≥ 0

which trivially holds.

Definition 3.1. The slack matrix of the CORRn is 2n × 2n matrix M∗ = M∗(n)

M∗a,b = (aT b− 1)2.

Each row a represents a subset of [n] (can be viewed as n-bit strings), the same applies to the
column b.

Theorem 3.2. For a slack matrix M∗ of a correlation polytope CORRn it holds that every
1-monochromatic rectangle cover of supp(M∗) has size 2Ω(n).

2



Corollary 1.
rk+(M∗) ≥ 2Ω(n)

Corollary 2.
xc(CORRn) = 2Ω(n)

We have somewhat an equivalence between polytopes CUTn and CORRn formulated in the
following theorem:

Theorem 3.3. Let M(n) denote the slack matrix of CUTn, extended with a suitably chosen set
of 2n redundant inequalities. Then M∗(n− 1) occurs as a submatrix of M(n) and hence

xc(CUTn) = 2Ω(n).

The theorem can be also formulated as:

Lemma 3.4. For every n ≥ 1, the polytopes CUTn+1 and CORRn are affine-equivalent.

4 Lower bound on xc(CORRn)

Definition 4.1. Define a rectangle of the slack matrix M∗

D(n) = {(a, b), a ⊆ [n], b ⊆ [n]| a ∩ b = ∅}.

There are only positions where a and b are different, so aT b = 0 and (aT b− 1)2 = (0− 1)2 = 1.
It is a monochromatic 1-rectangle.

Proposition 4.1.
|D(n)| = 3n

Proof. We have n vertices and the vertex can have 3 states. Either it is in a, or it is in b, or it
is neither in a nor b.

Proposition 4.2 (Decomposition of D(n) into rectangles). Let us have the non-negative rank
of matrix M∗ rk+(M∗) = k. We can find T ∈ R2n×k and U ∈ Rk×2n

such that M∗ = TU . We
will furtherly decompose M∗ as

M∗ = T1U
1 + T2U

2 + . . .+ TkU
k

with Ti ∈ R2n×1 and Ui ∈ R1×2n

.
For support matrices, it holds that

supp(M∗) =

k⋃
i=1

supp(TiU
i) =

k⋃
i=1

supp(Ti)× supp(U i)

Moreover, if the all the matrices Ti, U
i are nonzero, we can define a rectangle Ri = supp(Ti)×

supp(U i) for each TiU
i. These rectangles together cover the whole matrix D(n)

D(n) ⊆
k⋃
i=1

Ri.
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Definition 4.2. A set R ⊆ D(n) is valid if ∀(a, b), (a′, b′) ∈ R : |a∩ b′| 6= 1. For a valid R define
two sets R1, R2 as following

R1 := {(a, b) ∈ R such that n ∈ a, n /∈ b} ∪ {(a, b) ∈ R such that (a ∪ {n}, b) /∈ R,n /∈ b}

R2 := {(a, b) ∈ R such that n /∈ a, n ∈ b} ∪ {(a, b) ∈ R such that (a, b ∪ {n}) /∈ R,n /∈ a}.

Lemma 4.3.
(a, b) ∈ R⇒ (a, b) ∈ R1 ∪R2

Proof. Assume a ∩ b = ∅ and we will split the proof into 3 cases: n ∈ a, n /∈ a, n ∈ b, n /∈ a and
n /∈ b.

At first, n ∈ a implies n /∈ b, so (a, b) ∈ R1.
Secondly, n /∈ a, n ∈ b implies (a, b) ∈ R2.
Thirdly, we will split the case n /∈ a, n /∈ b into subcases.

• (a ∪ {n}, b) /∈ R⇒ (a, b) ∈ R1

• (a, b ∪ {n}) /∈ R⇒ (a, b) ∈ R2

• (a ∪ {n}, b) ∈ R and (a, b ∪ {n}) ∈ R ⇒ we have item at row a ∪ {n} and column b and
another item at row a and column b ∪ {n}, so we must have the item at row a ∪ {n}
and column b ∪ {n} since it is rectangle. This implies (a ∪ {n}, b ∪ {n}) ∈ R which is
contradiction with the assumption that they are disjoint.

Lemma 4.4. Let Q be a polyhedron having f facets such that CORRn is an affine image of Q.
Then there exists a covering of D(n) of size f.

Proof. By Definition 2.1 of the extension complexity and Theorem 2.2,

f = xc(CORRn) = rk+(M∗).

In Proposition 4.2, we have found a rectangle covering of size rk+(M∗), so it is a rectangle
covering of size f .

Theorem 4.5.

xc(CORRn) ≥
(

3

2

)n
Proof. Let ρ(n) be the largest cardinality of any valid subset of D(n). Any covering of D(n)

must have size ≥ |D(n)|
ρ(n) = 3n

ρ(n) . It remains to prove that ρ(n) ≤ 2n, which we will show by

proving that ρ(n) ≤ 2ρ(n− 1) holds for all n ≥ 1. We will prove this by induction on n.
Let R be a valid subset with sets R1, R2. Define the function f : R→ D(n− 1) as

f((a, b)) := (a \ {n}, b \ {n})

f(R1) = {(a \ {n}, b \ {n})|(a, b) ∈ R1}
f(R2) = {(a \ {n}, b \ {n})|(a, b) ∈ R2}

The two parts of each Ri are disjoint when n is subtracted, so it holds that |Ri| = |f(Ri)|.
Then by Lemma 4.3 and using induction hypothesis, we have

|R| ≤ |R1|+ |R2| = |f(R1)|+ |f(R2)| ≤ ρ(n− 1) + ρ(n− 1) = 2ρ(n− 1)
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Corollary 3.

xc(CUTn) ≥
(

3

2

)n

5 Under construction

Let P be polytope (by default let it be 0/1-polytope so all vertices lie on {0, 1}d), S is slack
matrix of P .

Definition 5.1. Let C be a cut. Define 1,−1 encoding C ′ for each edge e:

C ′e :=

{
−1 e ∈ C
+1 e /∈ C

Proposition 5.1. The 1,−1 encoding can be obtained from 0, 1 encoding by linear transforma-
tions.

Proof. 0, 1 − 1
2 ,

1
2  −1, 1 1,−1

Definition 5.2. Denote by U ⊆ V one part of vertices of the graph using the cut C. Then
define χU as following

(χU )v =

{
+1 v ∈ U
−1 v /∈ U

Then we have C ′ = χUχ
T
U

Have the graph Kn with vertices numbered from 1 to n (so the numbers are from set [n])
and xij := xixj corresponding to the edge between vertices i and j.

(wTx− 1)2 =

∑
i∈[n]

wixi − 1

2

≥ 0

Have the quadratic polynomial with variable vector x

(
wTx− 1

)2
=

∑
i∈[n]

wixi − 1

2

=

(∑
i

wixi

)2

−2
∑
i∈[n]

wixi+1 =
∑
i,j

wiwjxixj−2
∑
i

wixi+1 =

=
∑
i,j

wiwjxij − 2
∑
i

wixi + 1
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