Report of running the connected cut algorithm

This is an automatically generated report which runs the algorithm on given graphs. There is a graph, its integer linear program solution, linear program solution, enhancement of the linear program and approximation result.

Graph	ILP	LP	Enhancement	Aproximation	Enh Apx
comet	2	1.6363636363636362e+00 10			2
comet- alt	4	4	4	4	4
clique	30	9.99999 999999999999999 8 21 0+00			30
star	34	34	34	34	34
path	4	4	4	4	4
tree	12	10.5	12	12	12
petersen	12	2.666666666666666666666666666666666666			12

comet

The source vertex is s=0 and capacity is k=12.

Integer linear program

Cut

Linear program

Enhancement

Aproximation

Aproximation - enhanced

comet-alt

The source vertex is s = 12 and capacity is k = 10.

Integer linear program

Linear program

Enhancement

Aproximation

${\bf Aproximation - enhanced}$

clique

The source vertex is s=0 and capacity is k=3.

Integer linear program

Flow

Linear program

Flow

Enhancement

\mathbf{Flow}

Aproximation

Approximation - enhanced

star

The source vertex is s = 1 and capacity is k = 4.

Integer linear program

Cut

Linear program

Flow

Cut

Enhancement

Flow

Cut

Aproximation

Aproximation - enhanced

path

The source vertex is s = 0 and capacity is k = 6.

Integer linear program

Linear program

Enhancement

Aproximation

${\bf Aproximation - enhanced}$

tree

The source vertex is s = 0 and capacity is k = 15.

Integer linear program

Flow

Enhancement Flow Cut Aproximation Aproximation - enhanced

The source vertex is s = 0 and capacity is k = 6.

Integer linear program

Linear program

\mathbf{Flow}

Enhancement

\mathbf{Flow}

Aproximation

Aproximation - enhanced

