
Selected chapters from combinatorics

Tomáš Turek1

March 2, 2025

1These are my nots from the lecture selected chapters from combinatorics in the year 2024-2025. Keep in mind there
may be some mistakes. You may visit GitHub.

https://github.com/metury/notes


Contents

1 Definitions 2
1.1 Simple hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dual hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introducing BIBD and integrality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Projective planes 6
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Construction of projective planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Construction by algebraic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Further definitions and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Latin squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Another application of projective planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Existence of BIBD 10
3.1 Conjectures and theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Hales-Jewett theorem 13

5 Girth, ordering and coloring of hypergraphs 16
5.1 Size of edges – lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Unavoidable configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



Chapter 1

Definitions

1.1 Simple hypergraphs
Definition 1. Hypergraph is a tuple (X,M) where M ⊆ P(X). Or generally just a set system.

Definition 2. A simple hypergraph (linear, k-graph) is (X,M) if M1 6= M2 ∈ M ⇒ |M1 ∩M2| ≤ 1.

Example. Lets see some of the easier examples of simple hypergraphs.

• Graphs themselves are simple hypergraphs. Where (X,M) and M ⊆
(
X
2

)
.

• Or generally k-graphs, where M ⊆
(
X
k

)
.

• A well known Fano plane, see picture 2.1.

• Lets have a set of points A and define X =
(
A
2

)
; which are edges in A and M = {

(
T
2

)
||T | = 3, T ⊆ A};

which are triangles in A. This is also simple.

Definition 3. A chromatic number of such hypergraphs is defined in a following way:

χ(X,M) := min{k|∃
k⋃

i=1

Xi = X and no Xi contains M ∈ M}.

In other words: At least two ”colors” for each M ∈ M. And by Ramsey theory we may state that ∀k ∃X :
χ(X,M) > k.
Example. For fixed k ∈ N we have k committees, each of them has k members and they are meeting in a room
with k seats. Any two committees are disjoint. Can someone sit at the same place? And how many of them?
– This was stated by Erdős, Faber and Lovász in 1972.

Theorem 1 (Kuhn, Osthus, Kang, Kelly, Methuku, 2023). Showed that the previous example is true for large
k.

A different formulation can be said using simple hypergraphs. Lets have simple hypergraf (X,M) where
|M| = k and line chromatic number ≤ k. That is coloring the edges instead. If they meet they have to be
distinct.

Proposition 2. χl(K2k) = 2k − 1 for k ∈ N.

Sketch of proof. Lets draw the graph, so the vertices are on a circle. Then take the edges across in the same
direction and one from the inside of the circle to the boundary and color them. Then rotate and color once
again, until colored.

1.2 Dual hypergraphs
Lets now define a dual hypergraphs, which may not be so intuitive at a first glance. Lets see a picture 1.1
showing the incidence graph for (X,M). Then the dual is obtained by switching the parts of (X,M) and
(M′, X ′). Lets denote the dual of (X,M) as d(X,M).

Lemma 1. (X,M) is simple if and only if d(X,M) is simple.
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Figure 1.1: Diagram for the dual hypergraph.

M

X

M1 M2

x1 x2

Figure 1.2: Simple dual graphs proof.

Proof by picture. For the proof see the picture 1.2. This C4 like structure happens if it is not simple and hence
when we flip the diagram, obtaining the dual, the diagram does not change.

Now lets denote A(X,M) as an incidence matrix of a given hypergraph, then the dual has incidence matrix
A(d(X,M)) = AT (X,M).

Lets consider (X,M) a k-uniform hypergraph. Can we somehow bound the size of |M|? We may establish
trivial bounds as 0 ≤ |M| ≤

(
X
k

)
. We will further on make better bounds. Lets see the picture 1.3. We will be

using double counting method, for which we notice that for some
(
X
2

)
we have at least one M ∈ M.

M

(
X
2

)

M

(
X
2

) (
k
2

)

Figure 1.3: Providing better bound.

Hence we may compute the following.

|M| ·
(
k

2

)
=

∑
M∈M

(
|M |
2

)
≤

(
|X|
2

)
Therefore we can obtain the bound.

|M| ≤
(|X|

2

)(
k
2

)
See that this bound is actually tight. For k = 2 we can consider a graph Kn and for k = 3 we may look at
Fano plane. If the equality hold we call it Steiner system. Or in other words it is true if ∀x 6= y ∈ X ∃!M ∈ M
such that {x, y} ⊆ M . For k = 3 we call this Steiner triple system or STS for short (one can be seen as Fano
plane and the other as another seen on picture 1.4). This is particularly used in experiments and mainly in
agriculture. Usually this is then denoted as BIBD which stands for balanced incomplete block design.

3



Figure 1.4: Another Steiner triple system.

We may say that for STS to exists it must hold that both n− 1 and (n2)
(32)

must be integers. So it only exists
if n is either 6k + 1 or 6k + 3.

Theorem 3. Steiner triple system exists if and only if n is either 6k + 1 or 6k + 3.

Proof. We will be showing how it can be generated. That is from two STS we create a new one. First we
can observe that if both (X1,M1) and (X2,M2) are STS then also (X1 × X2,M) is STS, where M can be
viewed from a picture 1.5 or from an algebraic view. That is we have algebra of (X,M) A(X,M) then it is
A(X1,M1) × A(X2,M2).

(X2,M2)

(X1,M1)

x1

y1

z1

x2 y2 z2

x

y

z

Figure 1.5: Definition of M, where {x, y, z} ∈ M.

1.3 Introducing BIBD and integrality conditions
Definition 4 (BIBD). Hypergraph (X,M) is BIBD with parameters (v, k, λ, t) if |X| = v M ⊆

(
X
k

)
and

∀x1, . . . xt ∈
(
X
t

)
we have that |{M ∈ M|{x1, . . . , xt} ⊆ M}| = λ.

With the similar arguments we may see that |M| = (|X|
t )
(kt)

· λ this holds and hence it has to be an integer.
Now the question is whether there actually exists BIBD with given values (n, k, λ, t)? There is pretty simple

observation that if we take A ⊆ X of size |A| = a it must be true that (n−a
t−a)
(k−a
t−a)

· λ must be integer for the number
of such M ’s containing A. From these properties we establish the integer constraints for the existence of BIBD.

Proposition 4 (BIBD necessary constraints). If we have BIBD (n, k, λ, t) everything has to hold. Firstly the
size of M

|M| =
(|X|

t

)(
k
t

) · λ
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and also the integrality of the following fractions.(
n−a
t−a

)(
k−a
t−a

) · λ for a = 1, . . . , t.

Now recall that we have shown how two STS can create a new STS. Now we will show a similar proposition.

Proposition 5. If there exists BIBD (v, 3, 2, 1) then also BIBD (2v + 1, 3, 2, 1) exists.

Proof. The proof is by a picture 1.6. Firstly lets have STS and duplicate it. Then also add new vertex. We will
create new M ’s so that the properties of STS are still satisfied. Which also includes the newly created vertex.

M1

M2

Figure 1.6: Newly created larger STS, where for M1 and M2 we create all possible M so that at least one
element is from M1 and M2 and in total we have 3 elements.

Theorem 6 (R. Wilson, R. Chatouri). ∀k, λ, t = 2 for every large n the integrality conditions are sufficient for
the existence of BIBD.
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Chapter 2

Projective planes

Some may already encountered the projective planes or at least their finite versions. In this chapter we will
recall the definition and also some properties they have.

2.1 Basics
Definition 5. Projective plane is hypergraf (X,M) such that

1. every two (different) edges (or lines) intersect in exactly 1 point,

2. for every 2 (distinct) points there exist exactly one edge containing them,

3. there are four points so no 3 of them lies on same edge.

One of the most well known finite projective plane is Fano plane, which can be seen on a picture 2.1.

Figure 2.1: Fano plane.

Example. Now what about euclidean space R2? We can obviously see that part 3 is satisfied, and also the
property 2. Only for the very first one 1 we may encounter two lines which are parallel, hence they do not
share any point. But we may establish an infinite point for which all such parallel lines in this direction go to.
Therefore we must create a lot of infinite points, for every possible direction. But with such augmentation we
have broken the property 2 and so we need to add a line which goes through all infinite points.

2.2 Construction of projective planes
As in the example 2.1 shown before we will furthermore establish general technique to create a projective plane.
Firstly in a geometric way and later on also in algebraic way.

Lets firstly start by taking 4 points, so we are trying to create a smallest possible finite projective plane. To
fulfil all properties lets add few lines and end up with a box having two diagonals, see picture 2.2a. Now we
encounter the same problem as it was before, so we also add infinite points and extend the lines to them and
also creating a line going through all of such infinite points. Note that parallel lines now are those lines which
don’t cross each other in a point. With this procedure we get the following picture 2.2b and we may see that
it is indeed isomorphic to the well known Fano plane.

We can also apply to this to other starting points. We may see the result of applying to 3× 3 grid of points
and resulting in a projective plane depicted on picture 2.3.

But now one question may arise. In all cases we set few parallel lines and mainly decided which lines are so
called diagonal. Lets now generate such planes by using algebraic methods.
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(a) Starting box with 6 lines and 4 points. (b) Ending with 7 lines and 7 points.

Figure 2.2: Generating smallest projective plane.

(a) Starting 3× 3 grid with lines and diagonals. (b) Extension with infinite points and line.

Figure 2.3: Creating a projective plane from 3× 3 grid.

2.2.1 Construction by algebraic methods
Lets have F as a finite field. For such field we would like to create a projective plane. There are few approaches.
We will show two of them.

1. Take a vector space F2; that is tuples of elements from F. The main lines are obviously those which are of
a type (c, x) and (x, c) where c is some element from F and x is increasing elements from the same field.
And the diagonals are such lines which has the same difference between the two points, or in other words
the same slope.

2. Lets now take a vector space F3. Now the points are (sub)spaces of dimension 1; and the lines are
(sub)spaces of dimension 2. Therefore points are lines and lines are planes. Therefore all properties 1, 2
and 3 are satisfied from the perspective of linear algebra.

2.3 Further definitions and observations
Lets talk about some other propositions and definitions of projective planes.

Definition 6. Order of projective plane is the number of points on a(ny) line −1.

For this definition it is crucial to show that each line has the same number of points. For this see the next
lemma.

Lemma 2. Every projective plane has all lines of same size.

Proof. When we have two different lines p, q and a point x not lying on any of those, then we set a bijection of
points from p to points from q by the lines derived from x and the point of p. Since all such lines intersect in a
common point x then they cannot intersect in any point of q.

Note that the existence of such x is not obtained by default. Either it exists from the property 3. If all
points from this property are on p or q it must happen that exactly two of them are on p and the rest on q thus
seeing a lines going through these four points we get a common meeting point, which will be our desired x.
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Now one can already see that if we take projective planes of order 2 we have 2 ·2+2+1 points and for order
3 we have 3 · 3 + 3 + 1. So that the next proposition is true.

Proposition 7. Projective plane of order n has n2 + n+ 1 points.

Proof. Lets take a line p and a point x, for every point on p (where there is n + 1 of them) we see the line
going through x and such point. On all of these lines there is another n− 1 points. Therefore in total we have
n+ 1 + (n+ 1) · (n− 1) + 1 = n2 + n+ 1.

Also note that we haven’t missed any of the points. Otherwise there is a path going through x and such
point and this line must intersect p in one point, therefore it was already considered.

Lastly see the table of known results.

2 3 4 5 6 7 8 9 10 11 12
Fano plane Shown No plane in 1900. Computer search. OPEN

2.4 Latin squares
Lets now jump to another topic which is related to the projective planes. Latin squares are pretty much
generalized sudoku.

Definition 7. Latin square of order n is a table A of size n× n, where every entry of A is from a collection of
n items (we will assume it is n numbers). Then there are two constraints:

1. Every column has distinct entries.

2. Every row has distinct entries.

Figure 2.4: Example of a latin square.

Note that the table may represent how the multiplication in an inverse grupoid is defined. Now lets establish
the connection to projective planes. If we have a projective plane of order q, then by taking one line we say that
taking element from such line will be i and for another line we will take it as j. Then the element for which
connect is k and hence aij = k. But note that there is more choices of the other lines, therefore we have much
more latin squares.

Definition 8. Two latin squares L,L′ are said to be orthogonal; L ⊥ L′ if ∀k, k′∃!i, j such that aij = k, a′ij = k′.
(Or in other words pairs are unique.)

L1 L2 L1 ⊥ L2

Figure 2.5: Example of a two orthogonal latin square.

Therefore we may see that the existence of projective plane of order q lead to q−1 pairwise orthogonal latin
squares.
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Proposition 8. q − 1 pairwise orthogonal latin squares exists if and only if projective plane PG(q) exists.

We may now ask ourselves if this is the most number of pairwise orthogonal latin squares of order q. See
that this can be viewed only from the perspective of permutations.

Proposition 9. There can be at most q − 1 pairwise orthogonal latin squares of order q.

Proof. Lets assume we have t pairwise orthogonal latin squares L1, L2, . . . , Lt. Lets denote Lr = (arij). Now we
will change the labeling. For all squares set ar1j = j for all r ∈ [t], so first row is identity. Now check that ar21
has to differ from 1, and also due to the orthogonality we have from the first row all pairs (i, i), therefore ar+1

21

has to differ from ak21 for 1 ≤ k ≤ r. Hence t ≤ q − 1.

2.5 Another application of projective planes
Lets now take a graph G = (V,E) and suppose that we forbid K3 being a subgraph of G. Then by either Turán’s
result we get that |E| ≤ n2

4 when |V | = n or we look at graph Kn/2,n/2 which is also sufficient. Similarly look
at the example if we forbid K4 being a subgraph of G, then |E| ≤ O(n3). Which can also be seen by Turán’s
result or looking at a graph which has two parts V1, V2, V3 and all three has close to n/3 vertices and edges are
only going between these parts. On the other hand if we forbid C4 being a subgraph of G then we obtain much
smaller bound, which is |E| ≤ O(n3/2). Which is somewhat not expected and was proved by Erdős in 1940.

Proposition 10. For a graph G = (V,E) and n = |V | if C4 6⊆ G then |E| ≤ c · n3/2 for some constant c ∈ R.

Proof. We will be counting the pairs (v, {v1, v2}) which are sometimes called forks. When counting from the
tuple side we get that we have

(
n
2

)
such pairs and for each such pair there can be at most 1. Otherwise we will

have C4.
When we count from the other side we get that

∑
v∈V

(
deg(v)

2

)
. Therefore when combining it we obtain the

following inequality ∑
v∈V

(deg(v)− 1)2 ≤
∑
v∈V

(
deg(v)

2

)
≤

(
n

2

)
≤ n2.

Now lets use Cauchy-Schwarz:
∑

xiyi =
√∑

x2
i

√∑
y2i . And substitute xi = deg(v)− 1 and yi = 1.

2 · |E| − n =
∑

deg(v)− 1 ≤
√
n2

√
n = n3/2

And therefore |E| ≤ n3/2+n
2 .

Proposition 11. The previous upper bound is tight.

Proof. Lets take a projective plane of order q. So we have a hypergraf (X,M) where |X| = q2 + q + 1 = |M|
where M ⊆

(
X
k

)
for k = q + 1. Draw a diagram, where one line is for elements from M and the other are from

X. See the picture 2.6. And we can see that the red drawing cannot happen since it will induce C4.

X

M

∈

x

L

x1 x2

L1 L2

Figure 2.6: Diagram for the proof.

Therefore we have that |E| = |M| · (q − 1) = q3 + . . . and |V | ∼ 2(q2 + q + 1) therefore it is tight.
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Chapter 3

Existence of BIBD

Now lets get back to BIBD and if one exists with parameters (n, k, λ, t). Recall that we have steiner triple
systems (n, 3, 1, 2) and we can further generalize it to Steiner system which is for λ = 1; i.e. (n, k, 1, 2). It is
known that (n, 4, 1, 2) and (n, 5, 1, 2) exist non-trivial Steiner system, but for k > 6 it is not known.

Theorem 12 (P. Keevash). ∀k, λ, t ∃n0 s.t. BIBD (n, k, λ, t) where n > n0 exists if and only if integrality
conditions hold. Integrality conditions are the following.

λ

(
n−i
k−i

)(
k−i
t−i

) for all i ∈ [t− 1] has to be integers.

Proving that integrality conditions are necessary. Lets again draw a simple diagram, which can be seen on
picture 3.1. Then each such T is in λ M ’s and M is in

(
k
t

)
number of T ’s. Now lets fix a point x and set

M′ = {M ∈ M; |M ∩ x| > 0} and also in the same way T ′ = {T ∈
(
X
t

)
; |T ∩ x| > 0}. And vice versa for all

numbers, not just zero.

(
X
t

)

M

⊆

T

M

Figure 3.1: Diagram for the proof.

Note that n0 is dependent on all k, λ, t. So for answering the question if (k2 + k + 1, k + 1, 1, 2) exists we
cannot do much.

Now consider this following problem. How many blocks (or hyperedges) can you find so that every tuple is
in at most λ sets? See that we exchanged equality for an inequality.

Definition 9. Lets define a function m := maximum number of such blocks.

Theorem 13 (Erdős, Hanani). ∀ε ∃n0 ∀n ≥ n0 the following holds

m(n, k, λ, t) ≥ λ

(
n
k

)(
k
t

) (1− ε).

Erdős and Hanani stated this problem and in 1985 V. Rödl solved this problem and proved, that it really
holds. He proved it by a method which later on was called Rödl nibbling, which is also essential in Keewash.
Example. We have 15 schoolgirls, 7 days in a week and we want to form a groups of 3. Moreover we want that
every pair will be together in a group in exactly one day. We may only compute the value
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(
15
2

)(
3
2

) =
105

3
= 35

and so it is solvable.
Generally we would like to check if for a hypergraf (X,M) there exists M =

⋃
i Mi where Mi is exactly

matching of size 2l + 1.

3.1 Conjectures and theorems
As it was stated before we may furthermore extend the list of conjectures and sometimes even proven theorems.

Existence of partial BIBD. As it was stated in theorem 13 for large enough set X there exists such BIBD
(X,M).

Existence of BIBD. Furthermore Keewash showed stronger theorem which is about an exsitence of BIBD.
The theorem 14 is stated below.

Theorem 14 (Keewash, Osthus-Kuhn). ∃(X,M) BIBD (v, k, λ, t) for every k, λ, t and v ≥ v0(k, λ, t) with
integrality conditions.

Ringel tree packing problem. We may recall steiner tripple systems in which when we take Kn we want to
find edge-disjoint triangles in Kn such that every edge is in one triangle. This problem (and all other similar
sounding ones) are typically called packing problems. In our special case we know that |E(Kn)| =

(
n
2

)
= n

2 (n−1)
and in K2n+1 we take an arbitrary tree T with n+ 1 vertices. Now the question is if K2n+1 can be packed by
2n+ 1 copies of T .

This was proved as true by Sudakar and Keewash. Also observe that if |T | = n and we would have Kn then
having a tree having one vertex with degree n− 1 it is not possible to pack such tree.

Rosa conjecture. Suppose we have a tree T = (V,E) where |V | = n. Does there exist labeling l : V →
{1, 2, . . . , n} such that {|l(v)− l(u)|; {u, v} ∈ E} = {1, 2, . . . , n− 1}, i.e. the differences are distinct. This is an
Door-openopen problem.

We may not see the relation to the previous topics at a first glance, but imagine having a circle with numbers
around it. And we would connect the numbers by edges, which will be corresponding to the labeling, then we
would be looking at packing of such model.

Gyarfas. Most people will already know that
(
n
2

)
= n

2 (n− 1) = 1 + 2 + · · ·+ (n− 1) which is well known fact
already shown by Gauss. So lets use this to state another packing problem.

Given trees Ti for all i = 2, 3, . . . , n where Ti tree has i − 1 edges (or i vertices). The question is whether
such trees packs Kn?

• When all trees are stars (Ti have one ”middle” vertex with degree i − 1) then it is true. This can be
somewhat easily seen.

• On the other hand if we have trees which are either of a type star or path it is also true.

• But in general it is not known and it is Door-openopen.

Graph dimension. Before we state any theorem we must firstly define what is a product of graphs and also
dimension of graph.

Definition 10 (Graph product). For graphs G = (V,E) and G′ = (V ′, E′) their product G ×G′ is defined as
a new graph H = (V × V ′, E′′) where {(x, x′), (y, y′)} ∈ E′′ ⇐⇒ {x, y} ∈ E and {x′, y′} ∈ E′.

Definition 11 (Graph dimension). For a graph G = (V,E) we define dimension dim(G) = min(|I|) and G is
induced subgraph of

∏
i∈I Kn(i).

Theorem 15. For every G there exists n(i); i ∈ I such that G is induced subgraph of
∏

i∈I Kn(i).

Example. Lets see some examples of dimensions of graphs, where some may be easier and some harder. Firstly
trivially dim(Kn) = 1. Secondly for graph G consisting of a isolated vertex and Kn we have that dim(G) = n.
Lastly for a graph H of a matching we get that dim(H) = log n which was proved by Lovász, Pultr and Nešetřil.
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G

G′

H

Figure 3.2: Simple example of graph product, where both G and G′ are P1.

When we take a graph GV,1/2 which is a random graph with V vertices and every edge has probability 1/2
that it exists. The lower bound dim(GV,1/2) ≥ n

logn can be seen by a probabilistic argument and the fact that
dim(G) corresponds to the covering of edges of complement of G by equivalences. Moreover Guo and Warke
showed that for constants c, c′ we have the following.

c
n

log n
≤ dim(GV,1/2) ≤ c′

n

log n

Back to STS. For STS (v, 3, 1, 2) simple hypergraph (X,M) where M contains on k points at least k − 3
triples; that is for k ≥ 4. Erdős stated if there exists STS (X,M) such that on any l points there are ≤ l − 3
edges. This was proven as being true.

Large BIBD. But what about |M| ≥ n1+ε? This will be shown as being actually hard. We will talk about it
more later.
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Chapter 4

Hales-Jewett theorem

We will now jump to another topic which is mainly the Hales-Jewett theorem. This was actually motivated by
famous Van der Warden theorem 16.

Theorem 16 (Van der Warden). For every n > 0 and every finite coloring of integers there exists monochromatic
arithmetic progression of length n, i.e. a, a+ b, a+ 2b, . . . , a+ (n− 1)b for b > 0.

But the main issue is that this theorem is rather more algebraic and also used in combinatorics. For example
we could create an auxiliary hypergraph H = (N, all pregressions of length n) so that we are looking at edges.

Multidimensional Tic-Tac-Toe. Lets consider Σ finite alphabet (set). Then Σn is set of functions [n] → Σ
(usually called words). Lets define a hypergraph by the following set. L ⊆ Σn is combinatorial line if there
exist M ⊆ {1, 2, . . . , n} nonempty and f : [n] → Σ such that

L =

{
g|∃c ∈ Σ g(i) =

{
c if i ∈ M
f(i) if i /∈ M

}
.

Example. Lets have w = ({λ} ∪ Σ)n then lets have AλλB which can either be AAAB or ABBB. So formally
M = {2, 3} and f = AAAB.

1

2

3

1 2 3

λ1

1λ

λ2

2λ

λ3
3λ
λλ

Figure 4.1: Combinatorial representation of combinatorial lines for Σ = {1, 2, 3} and n = 2. Which we can see
we obtain a hypergraph H = (Σn,Lines).

Theorem 17 (Hales-Jewett, 1964). For every finite Σ and finite r > 0 ∃N > 0 denoted as HJ(|Σ|, r) such that
the chromatic number of H(ΣN ,Lines) is at least r, or alternatively if ΣN is (r− 1)-colored then there exists a
monochromatic combinatorial line (which is a subspace of dimension 1).

Theorem 18 (Van der Warden, 1927). For r number of colors and l length of progression is known then there
is finite version N = VW(r, k). And N is not primitive recursive.

Actually in the terms of Van der Warden theorem Shelah showed that VW has upper bound via a primitive
recursion which is of a kind

VW(r, k) ≤ 22
r2

2k+q

.
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Proof of Hales Jewett theorem.

Definition 12. Parameter spaces are for Σ finite alphabet and its n-dimensional parameter Σn of functions
[r] → Σ space.

So the d-dimensional subspace is a subset of Σn described by a word in Σ ∪ {λ1, λ2, . . . , λd} where every λi

appears at least once and is a set S = {w(u)|u ∈ Σd}.
Example. Σ = {a, b} let W = aλ1λ2bλ1, which by (aa) is replaced to aaaba.

Now we will proceed with improvement of the Hales Jewett theorem.

Theorem 19 (Hales Jewett – improved version). ∀ finite Σ ∀r > 0, d > 0 there exists N = HJ(|Σ|, r, d) such
that if ΣN is r-colored then there exist monochromatic d-dimensional subspace.

Observation. ∀s, d : HJ(s, 1, d) = d and also ∀r, d : HJ(1, r, d) = d. Lets see that HJ(2, 2, 1) = 2, or generally
that HJ(2, r, 1) = r which can be viewed by pigeonhole principle, so that there is k zeroes followed by r− k ones,
then every pair makes a line. In Σr are r + 1 step functions.

Lemma 3. ∀r > 0 HJ(s, r, 1) ⇒ ∀r, d > 0 HJ(s, r, d)

Lemma 4. ∀r, d > 0 HJ(s, r, d) ⇒ ∀r > 0 HJ(s+ 1, r, 1)

Proof of theorem 19. Simply put both lemmas 3 and 4 and the observation together and we are able to recreate
HJ for all s, r, d.

Proof of lemma 3. We will show that if ∀r, d > 0 HJ(s, r, 1) is finite then ∀r > 0 HJ(s+, r, 2) is finite. Fix s, r

and assume HJ(s, r′, 1) is finite. Put n1 = HJ(s, r, 1) and n2 = HJ(s, rs
n−1

, 1) and then HJ(s, r, 2) ≤ n2 + n1. We
may see this as that we have n2 initial segment and n1 suffix.

Let Σn1+n2 be r-colored, then define r · sn1 coloring of Σn2 . By the choice of n2 then Σn2 contains a
monochromatic line. χ : Σn2+n1 → r and χ′ is a function from Σn2 to the set of all functions Σn1 → r.

Color of this line is a r-coloring of Σn1 . By the choice of n1 it contains a monochromatic line. For higher d
replace n1 = HJ(s, rs

n1
, d).

Proof of lemma 4. Define Sa as a set of specials words. Suppose we know it for Σ and we want to add new
letter a /∈ Σ and find HJ(|Σ∪ {a}|, r, 1). Suppose for Sd ⊆ Σd we have k-times a and then the rest, that is some
word u ∈ Σd−k.

Claim 20. ∀r if Sr is r-colored in a way that color depends only on length of the initial segment (the number
of a’s) then Sr contains monochromatic line.

The claim is basically for the step function as was seen earlier.

Claim 21. ∀r, d, l ∃N such that if (Σ ∪ {a})N is r-colored then there exists d-dimensional subspace such that
color of words with at most l number of a’s followed by u ∈ Σd−l depends only on number of a’s.

Proof. For l = 0 use N = HJ(|Σ|, r, d). Let l = 1 then set n1 = HJ(|Σ|, r, d−1) and n2 = HJ(|Σ|, r, n1+1). Then
N = n2.

Which finishes the proof of the lemma.

Van der Warden from Hales Jewett. We may see a simple example 4.1 for which we would create
a progression of numbers (11, 12, 13, 21, 22, 23, 31, 32, 33) for which the progression are in a bijection to the
example above. This is somehow the principle of doing it in general. We encode the combinatorial lines into a
progressions.

Dual theorems. Now we will dig a little deeper into the Ramsey and Hales-Jewett theorems and how they
interact between each other.

Direct Ramsey Dual Ramsey
Pigeon hole principle Hales-Jewet theorem for n = 1

2-dimensional Pigeon hole principle Hales-Jewet theorem for n > 1
Ramsey Graham-Rothschild theorem

Table 4.1: Dual theorems.
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Theorem 22 (Graham-Rothschild, 1971). ∀ finite Σ ∀d, n, r > 0 ∃N = GR(|Σ|, d, n, r) such that if d-dimensional
subspace of ΣN are r-colored then there exists monochromatic n-dimensional subspace.

Lets define d-parameter word in alphabet Σ of length n as w ∈ (Σ ∪ {λ1, . . . , λd}) such that for every i < d
λi+1 occurs first time after occurrences of λi. For example Σ = {a, b}, n = 4, d = 2 we have aλ1λ2b which is ok
and λ!λ2λ1λ2 is also fine.

Lets denote [Σ]
(
n
d

)
as the set of all d-parameter words in Σ of length n. The notation arises from notation

which can be used for Ramsey theorem. Which can be written as ∀d, n, r ∃N : N → (n)dr , meaning that for
every r-coloring of

(
N
d

)
there exists s ∈

(
N
n

)
such that

(
s
d

)
is monochromatic.

Then also GR theorem can be rewritten as ∀d, n, rΣ ∃N : N →Σ (n)dr , meaning that for every r-coloring of
[Σ]

(
N
d

)
∃w ∈ [W ]

(
N
n

)
such that W [[Σ]

(
n
d

)
] = {W (u)|u ∈ [Σ]

(
n
d

)
} is monochromatic.

Sketch of proof for theorem 22. ∀ graph G, ∀r ∃H such that if all vertices of H are r-colored then H contains
G as induced monochromatic subgraph.

Given set S consider graph HS with vertices P(S) \ {∅} such that A,B ∈ P(S) form edge if and only if
A ∩B = ∅.

Now observe that ∀G ∃S large enough such that G is isomorphic to induced subgraph HS . So we take
Σ = {a} and [Σ]

(
N
2

)
.

Given G find N such that there is an embedding f : G → H[n] where N is the number of nonedges + the
number of vertices. Given r set N = GR(1, n, 2). Then let H[N ] be r-edge-colored. Then this corresponds to
coloring [Σ]

(
N
2

)
for Σ = {a}. By GR there exists n-dimensional subspace (which is an embedding H[n] to H[N ])

such that all edges are monochromatic.

That can be aslo extended to cliques. On the other hand paths won’t work.
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Chapter 5

Girth, ordering and coloring of
hypergraphs

5.1 Size of edges – lemma
For simple k-graphs (X,M) we have shown that χ may be unbounded, due to Ramsey and Hales Jewett, but
PG(g) has χ = 2 for g > 2. Also M ∼

(|X|
2

)
due to Erdős and Hanani. Now lets see if |M| ≥ |X|1+ε can be

true. Before showing the proof lets show some direct results from such statement.

Theorem 23 (Ordering property). Assume |M| ≥ |X|1+ε fo given k, ε and large X. ∀G = (V,E) and ∀
linear ordering of V there exists graph H = (W,F ) such that for every linear ordering � of W there exist
monotone embedding f : (G,≤) → (H,�). In particular f : V → W , {x, y} ∈ E ⇐⇒ {f(x), f(y)} ∈ F and
x ≤ y ⇐⇒ f(x) � f(y).

Proof. Let G = (V,E) be given and |V | = k. Let (X,M) be simple k-graph with n vertices. Let G be the set
of all graphs H = (X,F ) with property that for any M ∈ M the graph H|M ' G and every edge of F is a
subset of an M ∈ M. Then the number of placements of different orderings of G is a = k!

Aut(G) where Aut(G) is
the automorfism group of graph G.

Then |G| = a|M| ≥ an
1+ε . How many graphs H in G contain embedding (G,≤) → (H,�) for some �? That

is ≤ n!(a− 1)n
1+ε which is � an

1+ε , which can be seen by taking logarithms.

n1+ε log a > n log n+ n1+ε log(a− 1)

Hence there exists H ∈ G such that it suffices the property.

Other remark is that there exists H where all orderings of (G,≤) appear almost equally likely, which was
shown by Angel, Kechris and Lyons. The technique is called random placement method used in 1991 by Nešetřil,
Rodl and Ramsey.

Now we will show a stronger version of our stated property.

Theorem 24. ∀k ∀l ∃ε there exist (X,M) k-graph such that

1. |M| ≥ |X|1+ε and

2. (X,M) has no cycles of length ≤ l.

Note that we can have cycles of length 2 by just having M 6= M ′ ∈ M where |M ∩M ′| = 2. This can be
seen by drawing the incidence bipartite graph, where we have cycles of length 2l in comparison to the circles
inside a k-graph. Hence for l = 3 we obtain the original statement.

Proof. Proof with stronger theorem. Let G = (V,E) be given and |V | = k. Let (X,M) be simple k-graph with
n vertices. Let G be the set of all graphs H = (X,F ) with property that for any M ∈ M the graph H|M ' G
and every edge of F is a subset of an M ∈ M. Also H contains cycles of length ≤ l only in copies of G.

Theorem 25. ∀k ∀l ∃Gk,l = G:

1. χ(G) ≥ k and

2. G contains no cycles C3, C4, . . . , Cl−1.
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Proof. Put K = k + 1 and apply stronger theorem 24 for K, l, then we get (X,M) K-graph and |X| = n and
|M| ≥ |X|1+ε. We take M ∈ M and we put there one edge. G = {(X,E); (X,E)|M ' only one edge}.

Now a =
(
K
2

)
and any H ∈ G does not contain short cycles. How many graphs H in G have a χ(H) ≤ k?

So ∃f : X → {1, 2, . . . , k} on every M ∈ M ∃x 6= y such that f(x) 6= f(y). |G| = an
1+ε � |{G|χ(G) ≤

k,G ∈ G}| = kn · (a− 1)n
1+ε .

Now suppose we have a poset P = (X,≤) and we create Hase diagram. Question: Which graphs are
diagrams? For planar graphs it holds that G is diagram ⇐⇒ K3 * G ⇒ χ(G) ≤ 3. Problem is that whether
there exists graph without C of length [3, l] which fails to be a diagram? Then there is a theorem which states
that indeed it is true for all l. G is not a diagram ⇐⇒ ∀ ordering ≤ of V (G) there exists a cycle of length t
for some t.

Proof. Proof of theorem 24 Set ε = 1
l and put m = 2 ·n1+ε. Consider all k-graphs with m edges and n vertices.

There is exactly
((nk)

m

)
such k-graphs. Observe that if (X,M) has no cycles then |M|(k − 1) + 1 ≤ |X|. How

many of these k-graphs contain a cycle of length l′ ≤ l? By this observation it must be violated so it must be

≤ c(k, l′)n(k−1)l′
((n

k

)
− l′

m− l′

)
where

c(k, l′) =

((l′(l−1)
k

)
l′

)
.

Lets divide it be
((nk)

m

)
which leads to upper bound for average number of cycles of length l′. So we proceed

by summing it over all l′ ≤ l. Obtaining the following.

∑
l′≤l

c(k, l′)n(k−1)l′
((nk)−l′

m−l′

)
((nk)

m

)
We can simplify the binomials and just obtain

m · (m− 1) · · · 2 · 1(
n
k

)
· (
(
n
k

)
− 1) · · · (

(
n
k

)
− l′ + 1)

· nkl′−l′

and we are considering only with going to ∞, that is the leading elements of such polynomials. Hence we have

≤ c · nkl′−l′ · m
l′

nkl′
= c · n−l′ · n(1+ε)l′ = c · nεl′ ≤ n · c.

Therefore there has to be k-graph with such small number of short cycles. For that we will delete at most
cn edges to get rid of every short cycle.

Note that for this theorem there does not exist a constructive proof.
Corollary. ∀p, k ≥ 2, l ≥ 2 ∃(Y,N ) such that

1. N ⊆
(
Y
k

)
,

2. (Y,N ) has girth > l and

3. χ(Y,N ) > p.

Proof. Put K = p(k − 1) + 1 and let (X,M) be simple hypergraph such that M ⊆
(
X
K

)
and (X,M) has girth

> l and |M| ≥ |X|1+ε (by using the theorem 24). Let H be the set of all graphs (X,N ), where N ⊆
(
X
k

)
such

that

1. for every M ∈ M there exists ≤ 1 N ∈ N where N ⊆ M and

2. there are no other edges.
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Any (X,N ) ∈ H has girth > l. How many k-graphs from H have a chromatic number < p? That would be

≤ p|X| ·
((

K

k

)
− 1

)|X|1+ε

since it is the number of colorings multiplied by the number of k-graphs with given coloring (respectively). This
is

� |H| =
((

K

k

))|X|1+ε

.

We will also present a constructive proof in this case. But before we do so, we state some remarks. Usually
the chromatic number of a graphs is something like the complexity, or in other words it cannot be split into
small pieces. On the other hand girth is something like local simplicity. So the theorem states that even a graph
which locally seems simple it is still complex.

5.2 Unavoidable configurations
Definition 13. Graph F is χ-unavoidable if ∃n0(F ) for every graph G with χ(G) ≥ n0(F ) contains F as a
subgraph (not necessarily induced).

Corollary. Forests are only χ-unavoidable graphs.

Proof. If F is not a forest then F has a cycle of length l which by using the theorem 5.1 can be still made
arbitrarily colourful.

Suppose χ(G) � n0 and F is a tree. This implies that ∆(G) > n0, where ∆(G) denotes the maximum
degree.

Lets have vertices with small degrees and then delete them. Now we may end up with other vertices which
now have small degree so we proceed in the same way until we can. After that we take a vertex with the
maximum degree this has to have other vertices which also have a high degree and so on, this is how the tree
can be constructed.

Corollary. ∀k ∀F K-graph tree ∃n0(k, F ) such that any χ(X,M) ≥ n0 contains F .

Lemma 5. Any k-graph with high chromatic number contains large degree. (Sometimes this is called a sunflower
or ∆ system).

Proof. Suppose χ(X,M) ≥ (k − 1) · t = n0. Then we split vertices into a groups X1, X2, . . . , Xn0 by their
colours. We will take X1 and enlarge it to X ′

1 as much as possible without violating the colouring. Then for X2

we take X ′
2 = X2 \X ′

1 and again enlarge it. We will continue with all groups. All of them have to be non-empty,
otherwise the colouring was not optimal. Lets have x ∈ X ′

n0
. There has to be an edge to X ′

1, X
′
2, . . . , because

otherwise we would add x to one of them. This is how we got our sunflower.

Conjecture 1. Any high chromatic graphs contains either large Kn or given induced tree T . Alternatively: Fix
T tree, Kn. Let G be a graph Kn * G and T 6v G then χ(G) ≤ n0(T,Kn).

Conjecture 2. Same statement is not true for k-graphs.

Example. Lets consider k = 2 so graphs and l = 4, therefore triangle-free graphs. Try to create ∀n a graph such
that C3 * G and χ(G) = n. For n = 3 we take an odd cycle of length 5. Now we can proceed by Mycielski and
construct this graph 5.1

This can be actually generalized. Lets have Gn, for every vertex of such graph create a ”brother” which will
share the same neighbours. Then also create one common vertex and connect all brothers to him. See that this
has chromatic number at least n+ 1 if Gn had chromatic at least n.
Example. Another construction is so called Shift graph. We will create Gn by taking V to be E(Kn) and E(Gn)
being two consecutive edges in Kn by an ordering ≤. This graph also does not have triangles and χ(Gn) = log n.
Suppose that χ(Gn) ≤ t then E = E1∪̇E2∪̇ . . . ∪̇Et = E(Kn) easily seen that χ([n], Ei) ≤ 2 since no beginnings
and ends can overlap. Therefore χ(Kn) ≤ 2t, where the logarithm follows.
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(a) Five cycle. (b) Adding brothers and common point.

Figure 5.1: Mycielski creation of a graph.

5.3 Constructions
Theorem 26. ∀u, g, r there exists an u-uniform hypergraph of girth ≥ g and chromatic number ≥ r.

Definition 14. n-partite uniform hypergraph is (V1, . . . , Vn, E) where E ⊆
(
V1∪···∪Vn

u

)
and V1, . . . , Vn are

pairwise disjoint and ∀e ∈ E ∀i < n |e ∩ Vi| ≤ 1.

Example. For example if we set u = 2 and n = 2 then we obtain normal bipartite graph.

By partite construction – Nešetřil and Rodl. We will se a proof for g = 4 and every u, r. Let N → (u)1r be
pigeon hole number N = (u− 1) · r + 1. Picture 0 is N -partite hypergraph created as a disjoint union of

(
N
u

)
.

Edges are one for every projections.

P 1
0

P 2
0

P 3
0

P 4
0

Figure 5.2: Example: Picture 0 for u = 2, r = 3 and hence N = 4 with nice coloring having a monochromatic
edge.

Observe that if picture 0 is r-colored such that vertices with the same projection has the same color then
P0 has monochromatic edge.

Now by induction on n construct Pictures P1, . . . , PN such that

1. every Pi is a r-partite u-uniform hypergraph with girth ≥ 4 and

2. if Pi is r-colored then it contains a copy of Pi−1 such that all vertices in part i are monochromatic.

Claim 27. χ(PN ) ≥ r.

Proof. Let PN be r-colored by backward induction. Find copy of P0 s.t. colors depends only on projection and
use observation, see the picture 5.3.

Now we need to provide the exact construction which will have all the properties. That is we will construct
Pi from Pi−1. Let Ni → (|P i

i−1|)1r. Let P i
i = {1, . . . , Ni}. Now extend every subset of P i

i of size |P i
i−1| to a

disjoint copy of Pi−1 preserving partitions.
The second property we can see that for every r-coloring of P i

i−1 such that Part i is monochromatic holds
by the choice of Ni. The first property is to argue Pi has girth ≥ 4. This is since we have disjoint copies and
by induction and free amalgamations does not create triangles.

Proof. For higher g > 4 we will repair the previous proof in the following way. We will change Ni vertices so
taht we will have a hypergaph with at most 1 vertex in the intersection. So that we use this theorem for lower
g. In other words let H be |P i

i−1|-uniform hyper-graph of girth ≥ g − 1 and χ(H) ≥ r and we replace subsets
by hyperedges of H.

19



P4

P3

P2

P1

P0

Figure 5.3: Example for 4 Pictures.

5.3.1 Applications
Theorem 28 (Folkman). ∀G finite u-uniform ∀r > 0 ∃H u-uniform such that if vertices of H are r-colored
then H contains monochromatic copy of G as an induced sub-hyper-graph and ω(H) = ω(G) (which is the size
of the largest clique).

Proof. Let H0 be 4-uniform hyper-graph of girth ≥ 3 and χ(H0) ≥ 3. Replace every hyper-edge of H0 by G.

Definition 15. Recall that the metric space is M = (X, d) where d :
(
X
2

)
→ R+

0 and it satisfied triangle
inequality.

Theorem 29. ∀ finite metric space M ∀r > 0 ∃ a finite metric space N such that if N is r-colored then it
contains monochromatic copy of M .

Proof. Replace hyper-edges by M and complete N so the missing distances equal to the shortes path. But we
have to avoid cycles of length dmax

dmin
.

Theorem 30 (ROdl, Dudek et al.). F (G, r) ≤ cn
cv(G) log

d n for d ≤ 5 and c depends on r.

This is done by projective planes and probabilistic methods, but it was only mentioned on the very last
lecture.

20


	Definitions
	Simple hypergraphs
	Dual hypergraphs
	Introducing BIBD and integrality conditions

	Projective planes
	Basics
	Construction of projective planes
	Construction by algebraic methods

	Further definitions and observations
	Latin squares
	Another application of projective planes

	Existence of BIBD
	Conjectures and theorems

	Hales-Jewett theorem
	Girth, ordering and coloring of hypergraphs
	Size of edges – lemma
	Unavoidable configurations
	Constructions
	Applications



